
MASTER THESIS
(updated version)

Martin Dvořák

Minimum 0-Extensions
of Graph Metrics

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: RNDr. Jakub Buĺın, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

2021-02-27

I would like to express my gratitude to RNDr. Jakub Buĺın, Ph.D. for his
patient supervision, to prof. Vladimir Kolmogorov, Ph.D. for his help with
the construction of the function g in Section 3.3.2 and his suggestion of a
nicer notation for parameter names in my proofs, and to the student affairs
departments of both MFF UK and IST Austria for allowing me to finish
my master thesis simultaneously with my ongoing postgraduate studies and
for supporting me in working from home during the COVID-19 pandemic.

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources. It has not been
used to obtain another or the same degree.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

i

Title: Minimum 0-Extensions of Graph Metrics

Author: Martin Dvořák

Department: Department of Theoretical Computer Science and Mathemati-
cal Logic

Supervisor: RNDr. Jakub Buĺın, Ph.D., Katedra teoretické informatiky a
matematické logiky

Abstract: We consider the Minimum 0-Extension Problem for a given fixed
undirected graph with positive weights. We study the computational com-
plexity of the threshold decision variant with respect to properties of the fixed
graph, in particular modularity and orientability, as defined by Karzanov in
[Eur. J. Comb., 19/1 (1998)]. We approach the problem from the viewpoint
of the Finite-Valued CSP, which allows us to employ the rich theory that was
developed to prove the Dichotomy Conjecture.

On the negative side, we provide an explicit reduction from the Max-Cut
Problem to obtain NP-hardness for non-modular graphs. For non-orientable
graphs, we express a cost function that satisfies a certain condition which
guarantees the existence of an implicit reduction from the Max-Cut Problem.
On the positive side, we construct symmetric fractional polymorphisms in
order to show that the so-called Basic LP Relaxation can solve two special
cases of weighted modular orientable graphs: paths and rectangles.

Keywords: constraint satisfaction, computational complexity, graph metrics,
non-modular graphs

ii

Contents

1 Introduction 2
1.1 The Problem . 3
1.2 Examples . 4
1.3 Motivation . 6
1.4 The CSP framework . 7
1.5 History . 9
1.6 Methods and organization of this work 11

2 Preliminaries 12
2.1 Basic terminology of graph theory 12
2.2 Special classes of graphs . 13
2.3 Semimetrics . 15
2.4 Extension problems . 16
2.5 Computational complexity . 17
2.6 VCSP over a fixed language 19
2.7 VCSP language for our problem 19
2.8 Selected NP-complete problems 21

3 NP-completeness for non-modular graphs 22
3.1 Intervals and medians . 22
3.2 Properties of non-modular graphs 23
3.3 Construction of the reduction 24

3.3.1 A high-level description 24
3.3.2 The construction . 25

3.4 Analysis of the reduction . 26
3.4.1 Analysis of the functions 26
3.4.2 Analysis of the instances 32

3.5 Hardness result . 33

4 NP-completeness for modular non-orientable graphs 34
4.1 Properties of modular non-orientable graphs 34
4.2 Construction of the model . 35
4.3 Analysis of the model . 36
4.4 Hardness results . 38

5 Easy cases 40
5.1 Algebraic tools . 40
5.2 Linear optimization tools . 41
5.3 Results . 42

6 Conclusion 49

Bibliography 50

1

1. Introduction
Constraint Satisfaction Problems (CSPs for short) are an important area of
Artificial Intelligence. CSPs are frequently used in planning, scheduling, and
game playing. We will study an interesting subclass of binary CSPs, based on
graph metrics. The problem is called the “Minimum 0-Extension Problem”[1].

We will generalize the problem from simple graphs to weighted graphs.
The generalized problem is equivalent to the “Multifacility Location Problem”
which has a natural practical motivation in economics. We will show that
small differences in the underlying graph can make huge differences in the
computational complexity of the resulting CSP.

Figure 1: Example of a modular orientable graph

2

1.1 The Problem
There are several ways how to formulate the Minimum 0-Extension Problem.
We will use one formulation here (as the Multifacility Location Problem) but
two different formulations (which will be more formal) will follow inside the
thesis (Definition 35 and Definition 54). All of them are equivalent (i.e. they
posses the same expressive power).

We have a list of facilities, some of which are already built (existing
facilities, also referred to as “old facilities”), others are to be located and
built later (“new facilities”). We want to minimize the logistic costs. There
are two kinds of expenses. First, there are transportation costs between old
facilities and new facilities. Second, there are transportation costs between
pairs of new facilities. Costs are obtained by the product of the distance and
the intensity of traveling (cost weight).

The cost weights are expressed by a binary function c. The distances are
expressed by a graph metric d. Let us denote the set of existing facilities
by V and the set of new facilities by X.∑︂

x∈X

∑︂
v∈V

(︂
c(x, v) · d(x, v)

)︂
+ 1

2 ·
∑︂
x∈X

∑︂
y∈X

(︂
c(x, y) · d(x, y)

)︂
This is the function which we are asked to minimize [2].

The expected form of the solution is a map from X to V , i.e. which old
facility should each new facility be built next to. Without this additional
condition, the task would be called the Minimum Extension Problem (see
Definition 34 for a precise formulation).

⋆ ⋆ ⋆

It is not surprising that the Minimum 0-Extension Problem is (in its full
generality) NP-complete. We are interested in a finer classification of the
computational complexity in order to identify some tractable cases. We will
fix the set of the old facilities and their distance matrix, i.e. the weighted
graph Gw = (V, E, w).

This now-fixed graph Gw will be referred to as the template. The set of
new facilities and their cost weights will be always given as the input. We
will be interested in the worst-case (over all inputs) time complexity of the
Minimum 0-Extension Problem for Gw depending on the graph-theoretical
properties of the template Gw.

We will later see that even small differences in the graph Gw can cause
dramatic differences in the complexity of the Minimum 0-Extension Problem
for Gw.

⋆ ⋆ ⋆

The Minimum 0-Extension Problem was previously studied within three
different frameworks: (1) graph theory, (2) metric spaces, and (3) constraint
satisfaction problems. We will use the third option (CSPs) because it allows
a convenient representation of both the instance and its parts.

In particular, we will work with the fixed-language Finite-Valued CSP;
see Definition 52 for their detailed description.

3

⋆ ⋆ ⋆

It is important to mention that we will use only “good graphs” (connected
graphs, with positive weights, without redundant edges; see Definition 32)
in place of the templates in the whole thesis. This restriction does not make
our results weaker.

Redundant edges can always be deleted, zero-weight edges can always
be contracted, and negative-weight edges do not make any sense in the
Multifacility Location Problem. If the template is not a connected graph,
we can first easily check for admissibility (i.e. no pair of distinct components
from the template gets connected by the instance’s edges) and then optimize
the cost in each component separately. Therefore, the assumption of “good
graphs” does not bring any loss in the expressive power.

1.2 Examples

Let us have a look at two concrete examples. They are both based on the
same template — a specific tree on 11 vertices. It is a simple graph, or in other
words, all edges have weight 1. Chemists might call it “4,4-diethyl-heptane”.

The black graph is this template. Instances are described by blue vertices and
red edge weights. The blue vertices must be mapped to the black vertices.

4

6

78 5

4
3 4

5

7

6

2

a b c d e f g

A B

C D

E

F

h

i

j

k

This example is easy to solve by hand. The blue vertex A gets mapped to
the black vertex a. The vertex B gets mapped to g. The intuitive reason
behind this is that the penalty for the distance between the instance vertex
and the template vertex is higher than the penalty for the distance between
the instance vertex and the other instance vertex.

The vertices C and D get both mapped to f . Here, it is more expensive
to map the instance vertices to different template vertices than to map the
instance vertex to a suboptimal template vertex.

The remaining two vertices can be optimized independently of the rest of
the instance. The vertex E gets mapped to d. The vertex F gets mapped
to i.

6

78 5

4

3

2

1
a b c d e f g

h

i

j

k

A B

C

D

Even though the main part is similar to previous example, it is optimal to
map all three interconnected blue vertices A, B, and C to the middle vertex d.
The remaining blue vertex D gets mapped to f .

5

1.3 Motivation
Location theory has already been studied for more than 300 year. One of
the oldest questions, formulated (probably) first by Pierre de Fermat [3] and
solved (probably) first by Evangelista Torricelli, asks for a point X that
minimizes the sum of distances |XA|+ |XB|+ |XC| given (a triangle) points
A, B, C as the input [4].

Since 1957, the field of location theory has been significantly expanding
to provide answers to many different kinds of questions [5]. Researchers
have been studying so-called center problems, asking to minimize the longest
distance, to minimize the longest travel time, or to minimize the maximum
transportation cost; so-called median problems, asking to minimize the sum
of all transportation costs; and so-called plant location problems, asking to
minimize the sum of all setup costs plus all transportation costs [5].

The Minimum 0-Extension Problem has its undeniable use in Economics
because it is a useful type of the median problem; in particular, it is classified
as “discrete p-median problem with mutual communication” [5].

⋆ ⋆ ⋆

Imagine that we own a chemical factory and we want to expand the factory
in order to produce greater amount and/or greater diversity of monetizable
chemicals. We, of course, want to reduce our expenses and thus increase our
profit.

There are many expenses that are beyond our control. However, we can
influence the transportation cost within our factory by choosing a convenient
location for our new buildings.

We want to minimize the transportation cost between each new building
and all old buildings that will transport material from and/or to the new
building and, because we are planning location of several new building at
once, we can also optimize for low transportation costs between pairs of new
buildings.

Depending on other conditions that apply to our scenario, this situation
can be best modeled by the Minimum Extension Problem, by the Minimum
0-Extension Problem, or by the Metric Labeling Problem [6].

⋆ ⋆ ⋆

Apart from its usage in Economics, the Minimum 0-Extension Problem has
practical applications in Computer Science, especially in Machine Learning.
Many tasks in the data classification make use of semantic object clustering.

Consider the task of hypertext categorization [7]. Each piece of text
can be characterized by a set of labels. In addition to that, there are
connections to other pieces of text. Existence of a hypertext link suggests
a probable closeness of the topics. By solving the Minimum 0-Extension
Problem, we combine the information about this piece of text itself with the
information about its relationship to other pieces of text [7]. Other areas
of similar practical applications include image segmentation and biometric
analysis [7].

6

A textbook example of the usage of the Minimum 0-Extension Problem
is the task of restoring an image degraded by noise [8]. Kleinberg and Tardos
describe the approach as follows [7]:

‘We are given a large grid of pixels; each pixel has
a “true” intensity that we are trying to determine, and
an “observed” intensity that is the result of corruption
by noise. We would like to find the best way to label
each pixel with a (true) intensity value, based on the
observed intensities. Our determination of the “best”
labeling is based on the trade-off between two competing
influences: We would like to give each pixel an intensity
close to what we have observed; and — since real images
are mainly smooth, with occasional boundary regions of
sharp discontinuity — we would like spatially neighbor-
ing pixels to receive similar intensity values.’

1.4 The CSP framework
In this work, we use the formalism of the Constraint Satisfaction Problems.
It is a wide framework for discrete optimization problems.

Informally speaking, the CSP deals with various problems in which we
want to assign values to some variables such that certain conditions are
satisfied. An example can be a distribution of T-shirts of various sizes to
a group of people where each person wants to get a T-shirt from some size
range that fits them.

In terms of the CSP jargon, we can translate it as follows. People will be
modeled by variables. T-shirt sizes correspond to labels. Requirements are
expressed by constraints. A map from the set of people to the set of sizes,
saying who gets which T-shirt, corresponds to a labeling.

⋆ ⋆ ⋆

There are many types of the CSP which deal with admissibility and/or
optimality in various ways. Most of the previously-studied problems from
combinatorial optimization can be modeled using a suitable kind of the CSP.

The Crisp CSP (often called just the CSP) deals with problems like SAT.
We are given a set of “constraints” (conditions) and we search for a “labeling”
(an assignment of values to variables) such that all constraints are satisfied.

(x ∨ y) ∧ (¬x ∨ ¬y) ∧ (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z)

This instance has two solutions, namely the labeling x = 0, y = 1, z = 0 and
the labeling x = 1, y = 0, z = 1.

The domain (the set of possible values to be assigned to the variables)
can have more than two elements. For instance, the 3-Coloring is an example
of the Crisp CSP and its domain contains 3 elements.

7

The Max CSP deals with problems like MAX-SAT. We are again given a
list of constraints but now we want to satisfy the maximum number of them,
not necessarily all.

(x ∨ y), (¬x ∨ ¬y), (x ∨ ¬y ∨ ¬z), (¬x ∨ y ∨ z), (x ∨ z), (y ∨ ¬z)

If this were an instance of SAT, it would be unsatisfiable. However, we can
satisfy 5 out of 6 clauses, for instance by a solution to the previous problem.

Clearly, MAX-SAT is no easier than SAT. If we can solve MAX-SAT, we
can easily solve SAT by comparing the maximum number of satisfiable clauses
with the total number of clauses. On the other hand, a negative answer to
a SAT instance does not tell much about the solution of the corresponding
MAX-SAT instance. Under certain assumptions, we can say that MAX-SAT
is even strictly harder than SAT. It is known that 2-SAT is in P whereäs
MAX-2-SAT is NP-hard.

The same observation can be stated in general. The Max CSP is at least
as hard as the Crisp CSP with the same constraints. Another example, in
which the “Max version” is strictly harder, under certain assumptions, is the
Max-Cut Problem (NP-hard Max CSP) whose corresponding Crisp CSP
(determining whether a given graph is bipartite) is solvable in linear time.

The Max CSP could also be weighted, that is, each condition is given its
importance (a positive rational weight). The goal is to maximize the sum of
weights of all satisfied conditions. This is sometimes called “Weighted CSP”.
Do not mistake it for “Valued CSP” which is discussed below.

The Finite-Valued CSP generalizes it further. Crisp constraints are re-
placed by rational-valued cost functions. They are no longer restricted to
the two values 0 and 1.

From now on, the standard convention is to minimize the sum. We will
work with minimization in this thesis as well. The Minimum 0-Extension
Problem is an example of the Finite-Valued CSP. Rational values are used
because there does not exists any efficient encoding of general real numbers in
a computer. Moreover, real values can be approximated by rational numbers
very well.

Crisp conditions and rational-valued cost functions can be combined. The
first intermediate level is known as the Min-Cost-Hom. In the Min-Cost-Hom
Problem, all rational-valued cost functions are unary but crisp conditions can
have any arity. The crisp conditions are sometimes called “hard constraints”;
the rational-valued cost functions are sometimes called “soft constraints”. An
example follows.

minimize: 3x + 5y + 4z
under the conditions: (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z)

The optimum labeling is x = 0, y = 1, z = 0.
The General-Valued CSP is the most general type of the CSP discussed

here. It is based on the notion of general-valued cost functions. They are
functions of arbitrary arity that can output infinity for some inputs and
various rational values for other inputs. The General-Valued CSP generalizes
both the Finite-Valued CSP and the Min-Cost-Hom.

8

⋆ ⋆ ⋆

We can restrict what concrete constraints can appear in the instance. Many
researchers are interested in the computational complexity of these so-called
fixed-language CSPs [9] [10]. For example, 3-SAT is defined by the language
{ {0, 1}3 \ (0, 0, 0), {0, 1}3 \ (0, 0, 1), {0, 1}3 \ (0, 1, 1), {0, 1}3 \ (1, 1, 1) }.

In this framework, the Minimum 0-Extension Problem is not one problem.
It is a class of problems. Every graph defines its own Minimum 0-Extension
Problem where the template is fixed and the input graph is mapped onto it.
Every graph has a unique finite-valued constraint language. We study the
complexity of the Minimum 0-Extension Problem with respect to the proper-
ties of the fixed template that defines this finite-valued constraint language.

1.5 History
Several special cases of the Minimum 0-Extension Problem were studied
before. In the following short survey, we will assume that the template is a
simple graph unless stated otherwise.

In 1956, Ford and Fulkerson [11] studied the Maximum s, t-flow Problem
and the (dual) Minimum s, t-cut Problem. The latter is equivalent to the
Minimum 0-Extension Problem where the template is K2 (see Definition 12).
Their algorithm provides a constructive proof that the Minimum 0-Extension
Problem for K2 is in P (see Definition 41).

In 1978, Picard [12] studied the Minimum 0-Extension Problem for trees
(see Definition 10). The generalization to forests is straightforward. He
thereby proved that the Minimum 0-Extension Problem for acyclic graphs
is in P. See also [13] (a follow-up report written by Kolen in 1979) for an
alternative formulation of the same algorithm and his later book [5] for a
clearer explanation and more context.

In 1994, Dahlhaus, Papadimitriou, Seymour, Johnson, and Yannakakis
[14] studied the Multiterminal Cut Problem (see Definition 56). This problem
is equivalent to the Minimum 0-Extension Problem for Kn. They proved that
it is NP-complete (see Definition 48) for all n ≥ 3.

In 1996, Chepoi [2] proved that the Minimum 0-Extension Problem for
median graphs (see Definition 64) is in P. This generalized the positive
result of Picard and Kolen to other graph classes, e.g. hypercubes, grids, and
cartesian products of trees [15].

In 1998, Karzanov [1] stated the Minimum 0-Extension Problem in its
full generality (for simple graphs) and established the following important
results. If the template satisfies all three conditions: that it is bipartite (see
Definition 11), that it is orientable (for his own definition of orientability
that deals only with cycles of length four; see Definition 18), and that
there is no isometric cycle (see Definition 8) of length greater than five,
then the Minimum 0-Extension Problem for this template is in P. He also
provided an equivalent condition saying that, if the template is both heredity
modular (see Definition 15) and orientable (see Definition 18), then it is
in P. He also established two hard cases. If the template is non-modular
(see Definition 14), then it is NP-complete. And also, if the template is

9

non-orientable (see Definition 19), then it is NP-complete as well. Karzanov
used a reduction from the Max-Cut Problem (see Definition 59) in his both
hardness proofs. His method is based on previous hardness proofs for Kn; in
particular, it is based on the “submodularity counterexample” (a counterex-
ample to an incorrect algorithm for the 3-Terminal Cut Problem) from [14].
These results were a significant improvement over the results from 1978 and
1994 (see Observation 20 and Observation 21) but were independent of the
Chepoi’s result from 1996 (see Remark 65). In remained an open question
of whether the Minimum 0-Extension Problem for modular and orientable
graphs that are not hereditary modular (see Observation 16) is in P.

In 2012, Hirai [16] answered this question positively. He provided an
elaborate algorithm based on Linear Programming (see Definition 96) which
solved the Minimum 0-Extension Problem for all graphs that are both mod-
ular and orientable (see Figure 1). This generalized both the Chepoi’s result
from 1996 and the positive Karzanov’s results from 1998.

When I was introduced to this problem by professor Vladimir Kolmogorov
[17] during my internship at IST Austria in 2019, I incorrectly believed this
was the state of the art at that moment. I was unaware of a publication by
Karzanov from 2004 that had generalized the hard cases to weighted graphs.
I started an independent research on this generalization.

⋆ ⋆ ⋆

In parallel with the research on the Minimum 0-Extension Problem, there
was an important research on the CSP complexity in general. Computational
complexity as such was still a rapidly-developing area. In 1975, Ladner [18]
discovered that, assuming P ̸= NP, there must be some NP-intermediate
problems. This raised a question of whether the fixed-language CSP can
be NP-intermediate. This question lead to a fruitful decades-long research
programme on the CSP dichotomy.

There are many dichotomy theorems with various degrees of generality.
In 1978, Schaeffer [19] solved the case of the Boolean CSP (generalizes SAT)
by giving a list of polymorphisms such that if the language admits at least
one of them, the corresponding CSP is in P; otherwise it is NP-complete.
The Dichotomy Conjecture was formulated — that the fixed-language CSP
is always either in P, or it is NP-complete; or in other words, that it is never
NP-intermediate.

In 1990, Hell and Nešetřil [20] solved the case of Graph Homomorphism
Problems (a different problem than what we study in this thesis; it gener-
alizes the k-Coloring) by stating that, for a fixed codomain (template), the
Graph Homomorphism Problem is in P if the graph (template) is bipartite;
otherwise it is NP-complete.

In 2012, Thapper and Živný [21] solved the case of every Finite-Valued
CSP by stating that the VCSP of a fixed finite-valued language is in P if the
language admits a symmetric binary fractional polymorphism (see Definition
95); otherwise it is NP-complete.

In 2017, Zhuk [22] solved the case of all Crisp CSP by stating that
the fixed-language Crisp CSP is in P if the fixed language admits a weak

10

near-unanimity polymorphism; otherwise it is NP-complete. Almost at the
same time, Bulatov [23] provided an independent proof of the same theorem
(both were announced in Spring 2017). This result significantly generalized
the old result of Shaeffer from 1978 and provided a positive answer to the
Dichotomy Conjecture by Feder and Vardi [24] from 1993.

In 2017, Kolmogorov, Roĺınek, and Krokhin [25] connected the results and
proved the dichotomy theorem for every fixed-language General-Valued CSP.
In reality, they started this research prior to the announcement of Zhuk’s (and
Bulatov’s) result but their proof is based on the assumption that the Crisp
CSP Dichotomy has already been established.

⋆ ⋆ ⋆

The main motivation for the study of the CSP has long been its usefulness
in artificial intelligence [26] [27]. As one of the first practical application of
the CSP, we would like to mention the scene labeling task [28] [29] studied
in the 1970s (if we ignore some “prehistoric problems”, such as the 8-queen
problem, which had been studied long before the CSP was formulated; even
though it can now be viewed as an instance of the CSP, although we cannot
require the CSP language to be fixed if we want to model the general N -queen
problem by the CSP).

As of 1992, the CSP was used in planning, scheduling, temporal and
spatial reasoning, causal reasoning, computer vision, natural language pro-
cessing, and diagnostic reasoning [30]. The CSP is also used in the design of
algorithms for playing various games [31].

The theory of the CSP is also connected to the foundations of the database
theory [32] [33]. As a matter of fact, the CSP in the most typical definition
(i.e. the Crisp CSP with constraints defined by tables given on the input) is
equivalent to asking whether a NATURAL JOIN in the SQL database [34]
is non-empty.

Most recently, the CSP has been heavily studied using the tools of uni-
versal algebra (such as the theory of clones) [35] [36] [37].

1.6 Methods and organization of this work
The complexity of the hard cases will be established by polynomial reductions
from the Max-Cut Problem (see Definition 59). Our first reduction will be a
classical explicit reduction. Our second reduction will be more algebraic.

The complexity of the easy cases will be established using the Basic LP
Relaxation (see Definition 98).

⋆ ⋆ ⋆

Chapter 2 defines the terms used throughout the thesis and explains the basic
relations between them. The majority of unusual terms is defined in Sections
2.4, 2.6, and 2.7 in details. Chapter 3 generalizes the case of non-modular
graphs. Chapter 4 generalizes the case of non-orientable graphs. Chapter 5
attempts to generalize the case of modular orientable graphs but ends up
solving only two small subclasses of them.

11

2. Preliminaries
Even though we are standing on the grounds of a formal science, the termi-
nology and the formal notations are not fully consistent among all authors.
Therefore, it is our best interest that we define the terms and symbols used
in the thesis before we present our discoveries and thereby we hope that this
work will be sufficiently self-contained. By defining “everything” we use, we
also allow our work to be accessible for a slightly wider audience.

Yes, we expect the reader is familiar with elementary algebra and knows
the commonly-used symbols from the first-order logic and set theory. On the
other hand, we do not assume that the reader is educated in the areas of
graph theory and the Constraint Satisfaction Problems.

Apart from the definitions, this chapter contains many observations that
should be obvious immediately after reading the definitions.

We aim to be as formal as possible. However, we occasionally resort to a
compromise between the mathematical rigor and readability.

In order to minimize the risk of confusion, we write our formulas in the
prenex normal form [38]. We omit brackets around quantifiers and we instead
write small glues around them for better readability. A colon is used as a
delimiter between the prefix and the matrix.

2.1 Basic terminology of graph theory
This section introduces the most fundamental terms in graph theory and
declares the basic formalism exactly as it will be used throughout the thesis.

Definition 1. Let V be a finite set. Let E be a set containing some pairs
of elements from V , that is E ⊆

(︂
V
2

)︂
. We say that G = (V, E) is a graph.

The set V is called vertices. The set E is called edges.

Definition 2. Let G = (V, E) be a graph. Let w be a function E → Q+
0 .

We say that Gw = (V, E, w) is a weighted graph, w is its weight function and,
for any edge e ∈ E, the value w(e) is the weight of the edge e.

For graphs which are not weighted, we will call them simple graphs, we
implicitly assume a constant weight function (in case we need to use weights
in our calculations), i.e. we define all weights of edges to be equal to one.

We say that Gw is a graph with positive weights if all edges have strictly
positive weights. Every simple graph can be viewed as a graph with positive
weights.

If we say only “graph”, as we did in Definition 1, we promise that things
do not break apart when we plug in a weighted graph. We will use the term
“weighted graph” only when working with the weight function w explicitly.

Definition 3. Let G = (V, E) and H = (W, F) be graphs. We say that H is
a subgraph of G, denoted H ≤ G, if H can be obtained from G by deleting
edges and deleting vertices. Formally, W ⊆ V and F ⊆ E.

In the case of weighted graphs Hw′ ≤ Gw, the weight function w′ of Hw′

must correspond to the weight function w of Gw restricted from E to F ,
i.e. ∀e ∈ F : w′(e) = w(e).

12

Definition 4. Let G = (V, E) be a graph. We say that (v1, v2, . . . , vk) is a
path in G if ∀i ∈ {2, 3, . . . , k} : {vi−1, vi} ∈ E. We say that (v1, v2, . . . , vk)
is a path from v1 to vk of length k − 1. The path is simple if i ̸= j implies
vi ̸= vj.

Definition 5. Let G = (V, E) be a graph. We say that the graph G is
connected if for all pairs of vertices u, v ∈ V , there exists a path from u to v
in G.

Definition 6. Let Gw = (V, E, w) be a weighted graph. Let u, v ∈ V be any
two vertices. We say that the distance between vertices u and v, denoted by
dGw(u, v) or just d(u, v) for brevity, is equal to the minimum sum of edge
weights on a path from u to v.

dGw(u, v) = min
(x1,x2,...,xk)
path in Gw,
u=x1,v=xk

k∑︂
i=2

w(xi−1, xi)

Just a brief comment about the “corner” cases. Note that d(u, u) = 0. Also
note that d(u, v) = ∞ if and only if the vertex v cannot be reached from u
by any path (which implies that the graph Gw is not connected).

Definition 7. Let G = (V, E) be a graph. Let (v1, v2, . . . , vk, vk+1) be a path
in G. If v1 = vk+1, then we say that (v1, v2, . . . , vk) is a cycle in G of length k.
The cycle is simple if k ≥ 3 and every 1 ≤ i < j ≤ k implies vi ̸= vj.

Definition 8. Let G = (V, E) be a graph. Let (c1, c2, . . . , ck) be a simple
cycle in G. Let us denote the cycle as a graph C = ({c1, c2, . . . , ck}, {{c1, c2},
{c2, c3}, . . . , {ck−1, ck}, {ck, c1}}). We say that the cycle (c1, c2, . . . , ck) is iso-
metric in G, if ∀ i, j ∈ {1, 2, . . . , k} : dG(ci, cj) = dC(ci, cj).

Definition 9. Let G = (V, E) and H = (W, F) be graphs such that H ≤ G.
We say H is an isometric subgraph of G if ∀ u, v ∈ W : dG(u, v) = dH(u, v).

The similarity of the terms is not accidental. An isometric cycle in G (see
Definition 8) induces an isometric subgraph of G (see Definition 9).

2.2 Special classes of graphs
This section defines several special classes of graphs, out of which most
important for us will be non-modular graphs and non-orientable graphs.

Definition 10. Let G = (V, E) be a graph. If G is connected and there is
no simple cycle in G, we say that G is a tree.

Definition 11. Let G = (V, E) be a graph. Let us decompose the graph
into partitions (two subsets of the vertex set): A ⊆ V, B = V \ A, such that
∀ a1, a2 ∈ A : {a1, a2} /∈ E and similarly ∀ b1, b2 ∈ B : {b1, b2} /∈ E.

In other words, all edges of G lie between partitions, no edge lies inside
a partition. If such sets A, B exist, we say that the graph G is bipartite.

13

Definition 12. Let n ∈ N and |V | = n. We say that Kn = (V,
(︂

V
2

)︂
) is a

complete graph on n vertices.
Definition 13. Let G = (V, E) be a graph. We say that G is modular [1] if:

∀ u1, u2, u3 ∈ V ∃v ∈ V ∀ (1 ≤ i < j ≤ 3) : d(ui, v) + d(v, uj) = d(ui, uj)
Definition 14. Let G = (V, E) be a graph. If G is not modular, we say that
G is non-modular [1].
Definition 15. Let G = (V, E) be a simple graph. If every isometric sub-
graph of G is modular, then we say that G is hereditary modular [1].
Observation 16. If G is a hereditary modular graph, then G is also modular,
because G is a “trivial” isometric subgraph of G. On the other hand, not
every modular graph is hereditary modular, see this example [39]:

Definition 17. Let G = (V, E) be a graph. Let E⃗ ⊆ V 2 be a set of ordered
tuples of vertices. We say that E⃗ is an orientation of E if both of the following
conditions hold.

1. ∀ {u, v} ∈ E : (u, v) ∈ E⃗ ∨ (v, u) ∈ E⃗

2. ∀ (u, v) ∈ E⃗ : {u, v} ∈ E ∧ (v, u) /∈ E⃗

In such a case, we additionally define an oriented graph G⃗ = (V, E⃗).
Definition 18. Let G = (V, E) be a graph. We say that G is orientable [1]
if there exists an orientation E⃗ such that each simple cycle of length 4 in G,
denoted by (a, b, c, d), has an orientation in G⃗ such that both of the following
conditions hold.

1. (a, b) ∈ E⃗ ⇐⇒ (d, c) ∈ E⃗

2. (b, c) ∈ E⃗ ⇐⇒ (a, d) ∈ E⃗

Definition 19. Let G = (V, E) be a graph. If G is not orientable, we say
that G is non-orientable [1].
Observation 20. Every tree is a bipartite graph, an orientable graph, and
a (hereditary) modular graph (see Definitions 10, 11, 15, 18).
Observation 21. For n ≥ 4, the complete graph Kn is a connected graph,
a non-modular graph, and a non-orientable graph (see Definitions 5, 12, 14,
19).

14

2.3 Semimetrics
In this section, we explain the basic terms connected to metric spaces and
their relationship with graph theory.

In addition to that, we define the notion of “good graph” which will be
used in all templates for the Minimum 0-Extension Problem from now on.

Definition 22. Let X be a set. We say that a function m : X × X → R+
0 is

a metric on X if:

1. ∀ a, b ∈ X : m(a, b) = 0 ⇐⇒ a = b

2. ∀ a, b ∈ X : m(a, b) = m(b, a)

3. ∀ a, b, c ∈ X : m(a, b) + m(b, c) ≥ m(a, c)

Definition 23. Let X be a set. We say that a function m : X × X → R+
0 is

a semimetric on X if:

1. ∀ a ∈ X : m(a, a) = 0

2. ∀ a, b ∈ X : m(a, b) = m(b, a)

3. ∀ a, b, c ∈ X : m(a, b) + m(b, c) ≥ m(a, c)

This m is typically called “pseudometric” [40]. However, we follow Karzanov’s
terminology [1] that calls it a semimetric.

Observation 24. Every metric is a semimetric. The only different between
Definition 22 and Definition 23 is in relaxing the first condition. In the case
of a semimetric, only one implication is required in the first condition, thus
there can be two distinct points in zero distance.

Definition 25. Let X ⊆ Y be sets. Let m be a semimetric on X. Let µ be
a semimetric on Y . We say that µ is an extension of m if it satisfies [1]:

∀ a, b ∈ X : m(a, b) = µ(a, b)

We can rephrase the definition informally as follows. If m measures
distances between elements of X and µ measures distances between elements
of its superset Y , then they agree on the distances among all pairs in X, so
they have the same “unit size” and one cannot find a shortcut between two
points in X by going through some points outside of X.

Definition 26. Let Gw = (V, E, w) be a connected weighted graph. We say
that the distance function dGw is a graph metric.

Observation 27. If Gw = (V, E, w) is a connected weighted graph, then its
graph metric dGw is a semimetric on V . It is easy to verify all three axioms.

Note that we say “graph metric” (since it is the standard term) even
though it is only guaranteed to be a semimetric (some edges can have zero
weight).

15

Observation 28. Let G, H be connected simple graphs. If H is an isometric
subgraph of G, then the graph metric dG is an extension of the graph metric
dH .
Definition 29. Let X ⊆ Y be sets. Let m be a semimetric on X. Let µ
be a semimetric on Y . We say [1] that µ is a 0-extension of m, if µ is an
extension of m such that:

∀a ∈ Y ∃b ∈ X : µ(a, b) = 0

In simple terms, the definition says that µ is an extension of m which
attaches each point in Y to a point in X.

As a result, if Y is a finite set, then the distance matrix for Y is the
same as the distance matrix for X where some rows and some columns are
repeated more than once.
Definition 30. Let Gw = (V, E, w) be a weighted graph. Let e ∈ E be an
edge of Gw. We say that e is a redundant edge if the graph metric stays
unchanged in the case of removing the edge e.

∀ u, v ∈ V : dGw(u, v) = d(Gw−e)(u, v)

Observation 31. Let Gw = (V, E, w) be a weighted graph and {a, b}=e ∈ E
an edge of Gw. The condition that e is non-redundant is equivalent to stating
that w(e) < d(Gw−e)(a, b). All edges in all simple graphs trivially satisfy this
condition.
Definition 32. Let Gw = (V, E, w) be a graph with positive weights such
that no edge e ∈ E is redundant and the graph G is connected. We say that
Gw is a good graph.
Observation 33. Every connected simple graph is a good graph.

2.4 Extension problems
This section contains a formal definition of the Minimum Extension Problem
and the Minimum 0-Extension Problem, which was outlined in Section 1.1.
Definition 34. Let Gw = (V, E, w) be a good graph. This graph will be
fixed including its weight function. The Minimum Extension Problem for Gw
is defined as follows [1]. The input describes a simple graph K = (X, L) such
that G ≤ K, a rational number N , and a cost function c : L → Q+

0 . The
task is to assign weights ˜︁w to edges in L such that dKw̃ becomes an extension
of dGw and the weighted sum is low, i.e. ∑︁

e∈L c(e) · ˜︁w(e) ≤ N . We say that
(K, c, N) is an instance of the Minimum Extension Problem for Gw.
Definition 35. Let Gw = (V, E, w) be a good graph. This graph will be
fixed including its weight function. The Minimum 0-Extension Problem for
Gw is defined as follows [1]. The input describes a simple graph K = (X, L)
such that G ≤ K, a rational number N , and a cost function c : L → Q+

0 .
The task is to assign weights ˜︁w to edges in L such that dKw̃ becomes a
0-extension of dGw and the weighted sum is low, i.e. ∑︁

e∈L c(e) · ˜︁w(e) ≤ N .
We say that (K, c, N) is an instance of the Minimum 0-Extension Problem
for Gw.

16

The only difference between Definition 34 and Definition 35 is that, in the
Minimum 0-Extension Problem, we require a 0-extension of the semimetric
(see Definition 29), but in the Minimum Extension Problem, we only require
an extension of the semimetric (see Definition 25).

2.5 Computational complexity
This section introduces the most fundamental complexity classes within NP.
We assume that the reader is familiar with Turing Machines, at least on
an intuitive level. For a formal definition, use any reasonable textbook on
theoretical computer science, for example [41].

We work with Turing Machines because they are used in the standard
terminology. Nevertheless, Random Access Machines can work for the pur-
poses of this thesis as well as, if not better than, Turing Machines. In order
to justify this claim, we only need the overhead to by polynomial (which is
easy to show in both directions).

Definition 36. Let Σ be a finite set, later referred to as an alphabet. Let
L be a set of words, L ⊆ Σ∗. We say that “deciding whether a given word
w ∈ Σ∗ belongs to L” is a decision problem. If w ∈ L, the answer is YES.
If w /∈ L, the answer is NO. The length of the word w, which is synonymous
with the input size, is denoted by |w|.

Note that L can be an infinite set (and it indeed is for all interesting
problems; if L or its complement is finite, then its decision problem can be
decided in constant time).

Definition 37. Let f and g be functions N → N. We define the Big-O
relation as f(n) ∈ O(g(n)) if:

∃K ∈ R+ ∀n ∈ N : f(n) ≤ K · g(n)

For example (5n3 + 9n − 58) ∈ O(n3) can be proved using K := 14.

Definition 38. Let f be a function N → N. Let M be any Deterministic
Turing Machine that accepts exactly the set A ⊆ Σ∗. If the number of
steps needed by M for a computation over an input w ∈ Σ∗ always lies in
O(f(|w|)), then A belongs to the class DTIME(f).

If A belongs to the class DTIME(id), we informally say that A can be
computed in linear time.

Definition 39. Let f be a function N → N. Let N be any Nondeterministic
Turing Machine that accepts exactly the set A ⊆ Σ∗. If the number of steps
needed by N on every computation branch over an input w ∈ Σ∗ always lies
in O(f(|w|)), then A belongs to the class NTIME(f).

Observation 40. For each function f : N → N, we see that the class
DTIME(f) is a subset of the class NTIME(f).

17

Definition 41. The deterministic Polynomial class P is defined as follows.

P =
⋃︂

k∈N
DTIME(nk)

If L ∈ P, we say that L can be computed in polynomial time.

Definition 42. The Nondeterministic Polynomial class NP (sometimes
incorrectly referred to as “Non-Polynomial class”) is defined as follows.

NP =
⋃︂

k∈N
NTIME(nk)

If L ∈ NP, we say that L can be verified in polynomial time.

Remark 43. We see P ⊆ NP, but the other inclusion (whether NP ⊆ P)
is an open question. Nobody currently knows whether P = NP.

Definition 44. Let A and B be sets defining decision problems. Let f be a
function Σ∗ → Σ∗. We say that f is a reduction from A to B if:

∀w ∈ Σ∗ : w ∈ A ⇐⇒ f(w) ∈ B

Definition 45. Let f be a reduction from A to B. We say that f is a
polynomial reduction from A to B if f is computable in polynomial time.

Observation 46. If f : Σ∗ → Σ∗ is a polynomial reduction, then |f(w)| is
polynomial in |w| for all w ∈ Σ∗.

Definition 47. Let B be a set defining a decision problem. We say that B
is NP-hard, if for each decision problem A in NP, there exists a polynomial
reduction from A to B.

Definition 48. If B in NP happens to be at the same time NP-hard, we
say that B is NP-complete. In other words, the class NP-complete is an
intersection of classes NP and NP-hard.

Observation 49. Let f be a reduction from A to B. Let g be a reduction
from B to C. Then the composite function (g◦f) is a reduction from A to C.
Furthermore, if both f and g are polynomial, then (g ◦ f) is a polynomial
reduction from A to C (see Observation 46).

As a result, the relation “existence of a polynomial reduction from A to B”
is transitive. Since the identity is a polynomial reduction from A to A, the
relation is also reflexive. We say that the relation “existence of a polynomial
reduction from A to B” is a quasiorder.

Observation 50. If B is NP-hard, C is in NP, and there exists a polynomial
reduction from B to C, then C is NP-complete.

Observation 51. If B is NP-hard, C is in P, and there exists a polynomial
reduction from B to C, then P = NP.

18

2.6 VCSP over a fixed language

This section contains a formal definition of the Finite-Valued Constraint
Satisfaction Problem, which was briefly mentioned in Section 1.4.

Definition 52. Let D be a finite set, called a domain. Elements of D are
often referred to as labels. We say that ϕ : Dn → Q is a cost function
of arity n. We say that Γ is a finite-valued constraint language over D if
Γ is a set of cost functions (Γ can be a mix of cost functions of various
arities). We say that I is an instance of VCSP(Γ) if I = (S, D, Φ, R) where
S = {x1, x2, . . . , xs} is a finite set of variables, R is a rational number called
a threshold value, and Φ is an objective function expressed as

Φ(x1, x2, . . . , xs) =
m∑︂

i=1
αi ·ϕi(xi)

where αi ∈ Q+, ϕi ∈ Γ, and xi ∈ Sar(ϕi).
In literature [10], the goal often is to find an optimal labeling x which is

an assignment S → D that minimizes Φ’s value. For our purposes, however,
decision problems are more convenient. For an explanation of the relationship
between optimization and decision problems, see for example [5].

We define that the labeling x : S → D is a solution to I if x yields
Φ(xx1 , xx2 , . . . , xxs) ≤ R. We say that the instance I is satisfiable if there
exists any solution x : S → D to I = (S, D, Φ, R).

Any variable xj ∈ V can appear in multiple cost functions ϕi in Φ. Any
cost function ϕ ∈ Γ can be used in multiple summands ϕi of Φ. Any label
a ∈ D can be assigned to multiple variables xj ∈ S in the labeling x.

Remark 53. VCSP stands for Valued Constraint Satisfaction Problem. For
a fixed language Γ over D, we will speak about VCSP(Γ) as of a decision
problem (see Definition 36) or just a problem for short. Typically, we will just
say that I is an instance of VCSP(Γ), without mentioning “the problem”.

2.7 VCSP language for our problem
This section provides an equivalent definition of the Minimum 0-Extension
Problem by reformulating it in the VCSP terminology. The formalism that is
introduced in the following definition will be used in all remaining chapters.

Definition 54. Given a good graph Gw = (V, E, w), we will construct a
finite-valued constraint language ΓGw = {d} ∪ {δv : v ∈ V } where d = dGw

(see Definition 6) and δv(w) = d(v, w).

19

Lemma 55. Definition 54 is equivalent to Definition 35.

In exact terms, we claim that the Minimum 0-Extension Problem for Gw
is reducible to VCSP(ΓGw) in linear time and that VCSP(ΓGw) is reducible to
the Minimum 0-Extension Problem for Gw in linear time. However, we will
not explore the details of the input encodings and transducers used in the
conversion. Let us keep this lemma short and informal.

Proof. Let Gw = (V, E, w) be a good graph. We will use the same graph Gw
in both Definition 54 and Definition 35.

First, we will show how to convert an instance (K, c, N) of the Minimum
0-Extension Problem for Gw, where G ≤ K = (X, L), to an instance I of
VCSP(ΓGw).

We set I = (S, V, Φ, R) where S = X \ V . This is the variable set, which
consists of “new” vertices. Let us look at the edges. For each edge {u, v} ∈ L
where u /∈ V and v ∈ V , we add c({u, v}) · δv(u) as a summand of Φ. And
for each edge {u, v} ∈ L where u /∈ V and v /∈ V , we add c({u, v}) · d(u, v)
as a summand of Φ.

Φ(S) =
∑︂

{u,v}∈L:
u/∈V ∧ v∈V

c({u, v}) · δv(u) +
∑︂

{u,v}∈L:
u/∈V ∧ v /∈V

c({u, v}) · d(u, v)

The optimal labeling x yields a value Φ(x) that is equal to the Minimum
0-Extension of Gw minus a constant. The constant is equal to ∑︁

e∈E c(e)·w(e)
which can be set to be zero by a restriction of the cost function c without any
loss in the expressive power of the Minimum 0-Extension Problem for Gw.

Finally, we set the threshold value R = N − ∑︁
e∈E c(e) · w(e). As a result,

the instance I is satisfiable if and only if the instance (K, c, N) is satisfiable.

For the other implication, let I =(S,V,Φ,R) be an instance of VCSP(ΓGw).
We will construct an instance (K, c, N) of the Minimum 0-Extension Problem
for Gw as follows.

K = (V ∪ S, E ∪ B) where B = {{u, v} | u ∈ S ∧ v ∈ (V ∪ S)}

We construct the cost function c in the following way. Let u ∈ S and v ∈ X.

c({u, v}) =

⎧⎪⎪⎨⎪⎪⎩
α, if v ∈ V ; and α · δv(u) is a summand of Φ
α, if v ∈ S; and α · d(u, v) is a summand of Φ
0, otherwise

In order to complete our reduction, we set the threshold value N = R.
It is easy to check that, as in the previous case, the new instance (K, c, N)

is satisfiable if and only if the instance I is satisfiable.

20

2.8 Selected NP-complete problems
In this section, we provide two (meta)examples of NP-complete problems.
These problems are highly relevant for the methods used in this work.

Definition 56. Let G = (V, E) be a simple graph and {t1, t2, . . . , tk} ⊆ V
be a set of distinct vertices called terminals. A set of edges Z ⊆ E such that,
for each 1 ≤ i < j ≤ k, every path from ti to tj contains at least one edge
from Z is called a k-terminal cut [42].

The task of searching for a k-terminal cut Z such that |Z| is minimum
for the given input (G, {t1, t2, . . . tk}) is called a Multiterminal Cut Problem.

Fact 57. If we fix k, then the Multiterminal Cut Problem is in P for k ≤ 2;
but for k ≥ 3 it is NP-complete [14].

Remark 58. The Multiterminal Cut Problem is often defined on weighted
graphs [42] but the basic version (see Definition 56) is sufficient for Fact 57
to hold [14].

Definition 59. The Max-Cut Problem is defined as follows. Given a simple
graph H = (W, F) and a number r ∈ N, we search for a set X ⊆ W such
that:

|{{u, v} ∈ F : |{u, v} ∩ X| = 1}| ≥ r

We say that (H, r) is an instance of the Max-Cut Problem. The set X that
satisfied the condition above is called a solution of the Max-Cut instance
(H, r).

Remark 60. Unlike searching for minimum cuts in graphs, for which efficient
algorithms are known [43], searching for maximum cuts in graphs requires
a long computation. The decision problem (whether such a set X exists, as
used in this text) is known to be NP-complete.

NP-completeness was first proved for weighted graphs [44] (which is the
Max-Cut Problem variant that we are not interested in) and then for simple
graphs [45] (which we use here).

Later, we will reduce the Max-Cut Problem to the Minimum 0-Extension
Problem in order to prove that the Minimum 0-Extension Problem is NP-hard
(and thus it is NP-complete).

21

3. NP-completeness for
non-modular graphs
In this chapter, we will prove that the Minimum 0-Extension Problem with a
non-modular (see Definition 14) good graph as the template is NP-complete.

Figure 2: Example of a non-modular orientable graph

3.1 Intervals and medians
Definition 61. Let G = (V, E) be a graph. For two vertices u, v ∈ V , we
denote the interval between u and v as the set of all vertices of G which lie
on any shortest path from u to v, formally:

I(u, v) = {t ∈ V : d(u, t) + d(t, v) = d(u, v)}

Observation 62. For any u, v ∈ V , their interval contains them, formally
I(u, v) ⊇ {u, v}. Moreover, if Gw = (V, E, w) is a good graph and {u, v} ∈ E,
then I(u, v) = {u, v}. The notion of interval between vertices will be central
to our work.
Definition 63. Let G = (V, E) be a graph. For any set of three vertices
{u, v, w} ⊆ V , we denote by Med(u, v, w) the median set of triplet {u, v, w},
that is the set of all vertices of G which lie on all three shortest paths between
vertex pairs u — v, v — w, w — u, formally:

Med(u, v, w) = I(u, v) ∩ I(v, w) ∩ I(w, u)

If their intersection is empty, that is Med(u, v, w) = ∅, then we say that
{u, v, w} is a median-less triplet in G.
Definition 64. Let G = (V, E) be a graph. We say that G is a median graph
if every median set is a singleton, that is:

∀ u1, u2, u3 ∈ V : | Med(u, v, w)| = 1

Fact 65. Every median graph is modular and orientable, yet the other im-
plication is not generally true [16]. It should also be said that there exist
some median graphs that are not hereditary modular [39].

22

3.2 Properties of non-modular graphs
Lemma 66. Let G = (V, E) be a non-modular graph. There must be at least
one median-less triplet in G.
Proof. If we negate the modularity condition

∀u1, u2, u3 ∈ V ∃v ∈ V ∀ (1 ≤ i < j ≤ 3) : d(ui, v) + d(v, uj) = d(ui, uj)

we obtain

∃u1, u2, u3 ∈ V ∀v ∈ V ∃ (1 ≤ i < j ≤ 3) : d(ui, v) + d(v, uj) ̸= d(ui, uj)

which says that no v lies in all three intervals I(u1, u2), I(u2, u3), I(u3, u1).
Therefore {u1, u2, u3} is a median-less triplet in G.
Remark 67. The other implication (a modular graph has no median-less
triplet) holds as well; however, we will not need it.
Lemma 68. Let Gw = (V, E, w) be a non-modular good graph. Let {u, v, w}
be a median-less triplet in G. Then “the triangle inequality is strict”:

d(u, v) + d(v, w) > d(w, u)

Proof. Since d is a graph metric, we know that d(u, v) + d(v, w) ≥ d(w, u).
This follows from the properties 22.2 and 22.3 and from Definition 27.

Furthermore, if d(u, v) + d(v, w) = d(w, u), then v ∈ Med(u, v, w), which
is in contradiction with our triplet {u, v, w} being median-less.
Definition 69. Let G = (V, E) be a non-modular graph. Let {u, v, w}
be a median-less triplet in G. We denote the sum of their three pairwise
distances d(u, v) + d(v, w) + d(w, u) as the circumference of the median-less
triplet {u, v, w}.
Definition 70. Let G = (V, E) be a non-modular graph. Let {u, v, w} be
a median-less triplet in G. We say that {u, v, w} is a minimal median-less
triplet in G if the circumference of {u, v, w} is less or equal to the circumfer-
ence of every median-less triplet in G.
Lemma 71. Let Gw = (V, E, w) be a non-modular good graph. Let {u, v, w}
be a minimal median-less triplet in Gw. Then any set of three shortest paths
between u— v, v—w, w— u form together a simple cycle in Gw.
Proof. None of the three paths alone can contain duplicate vertices, because
they must be shortest. In order to observe a simple cycle in Gw, we must
assure that every two paths meet only at their ends.

For contradiction, let there be a vertex t distinct from v inside both of the
shortest paths u — v and v — w. Then I(u, t) ⊂ I(u, v) and I(t, w) ⊂ I(v, w).
It follows that the median set of the triplet {u, t, w} is empty.

Med(u, t, w) = I(u, t) ∩ I(t, w) ∩ I(w, u) ⊆
⊆ I(u, v) ∩ I(v, w) ∩ I(w, u) = Med(u, v, w) = ∅

This inclusion says that Med(u, t, w) = ∅. As a result, the triplet {u, t, w}
is median-less, but its circumference d(u, t) + d(t, w) + d(w, u) is less than
the circumference of the median-less triplet {u, v, w}, thus our median-less
triplet {u, v, w} cannot be minimal, a contradiction.

23

3.3 Construction of the reduction

3.3.1 A high-level description
We are given a non-modular good graph Gw = (V, E, w) where {a, b, c} ⊆ V
is a minimal median-less triplet in Gw. Without loss of generality, we assume
that d(a, b) ≤ d(b, c) ≤ d(a, c). The graph Gw will be fixed for the whole
construction, independent of the input instance.

For any instance of the Max-Cut Problem (H, r), where H = (W, F) is a
simple graph, we create an instance I of VCSP(ΓGw) of size polynomial in |W |
such that the instance I will have a solution if and only if the Max-Cut
instance (H, r) has a solution.

We will construct the instance as follows. In the first step, given a pair
of vertices p, q ∈ {a, b, c}, where p ̸= q, we will force a variable w ∈ S to get
a label from I(p, q) using a function fp,q. In the second step, we will force the
variable w to get a label from {p, q} using a function gp,q. In the final step,
we will construct an objective function m such that its minimum value will
be a decreasing function of the size of the maximum cut in H.

a b

c

xc

xa

xb

ya

yb

yc

Figure 3: A gadget for an edge {x, y}. The strong black edges represent the
median-less triplet {a, b, c}. The strong blue edges are added by the function
f . The faint blue edges are added by the function g. The red edges are added
by the function h′.

24

3.3.2 The construction
For brevity, we introduce notation pq := l such that l ∈ {a, b, c}, l ̸= p, l ̸= q.
This “bar” notation was suggested by professor Kolmogorov [17] for better
readability. When written explicitly for p, q ∈ {a, b, c}, p ̸= q, it says:

ab = c , bc = a , ca = b

We start with an easy-to-imagine function f .

fp,q(x) = δp(x) + δq(x)

The construction of the following function, which has the desired properties,
was suggested to us by professor Vladimir Kolmogorov [17]. Let M be a
sufficiently large constant that depends only on Gw.

gp,q(x) = M · fp,q(x) + d(p, q)
d(p, pq) − d(q, pq) · δpq(x) + δp(x)

We assumed that p is incident with the longer path to the remaining vertex,
i.e. d(p, pq) > d(q, pq). If the inequality happens to be the opposite, we must
swap p and q. In the case of an equality between them, i.e. d(p, pq) = d(q, pq),
we simply define function g as follows.

gp,q(x) = M · fp,q(x) + δpq(x)

We will use the same triplet of median-less vertices in order to add six calls
of the function g for each edge e ∈ F of the Max-Cut graph.

h(ya, yb, yc, za, zb, zc) = gb,c(ya)+gb,c(za)+ga,c(yb)+ga,c(zb)+ga,b(yc)+ga,b(zc)

Now we create essential connections between variables.

h′(ya, yb, yc, za, zb, zc) = M · h(ya, yb, yc, za, zb, zc) +
+ d(ya, yb) + d(yb, yc) + d(yc, za) + d(za, zb) + d(zb, zc) + d(zc, ya)

Then we must introduce a penalty for avoiding the most distant vertex.

ĥ(ya, yb, yc, za, zb, zc) = h′(ya, yb, yc, za, zb, zc) +

+ d(b, c) − d(a, b)
d(b, c) · (δc(ya) + δc(za)) + d(b, c) − d(a, b)

d(a, c) · (δc(yb) + δc(zb))

In the end, we get the objective function by summing ĥ over all edges of
the Max-Cut graph H. Our instance is built as follows.

S = {wa, wb, wc : w ∈ W}

The set S contains three variables for each vertex of the graph H. The
objective function m contains a summand ĥ (applied to six variables) for
each edge of the graph H.

m(x) =
∑︂

{u,v}∈F

ĥ(xua , xub
, xuc , xva , xvb

, xvc)

The goal is to minimize m. More precisely, we search for a labeling x : S → V
such that m(x) ≤ K for some K based on H. The target value for K will
result from the analysis (Corollary 79 in particular).

25

3.4 Analysis of the reduction

3.4.1 Analysis of the functions
Lemma 72. Let f be the function V → Q as defined in Section 3.3.2.

arg min(fp,q) = I(p, q)

Proof. Since d is a graph metric, the triangle inequality tells us that

fp,q(p) = d(p, q) = fp,q(q)

is the (typically not strict) minimum of f . The definition of interval

I(p, q) = {t ∈ V : d(p, t) + d(t, q) = d(p, q)}

is equivalent to
{v ∈ V : δp(v) + δq(v) = d(p, q)}

and this set is equal to arg min(fp,q) because min(fp,q) = d(p, q).

Lemma 73. Let g be the function V → Q as defined in Section 3.3.2.

arg min(gp,q) = {p, q}

Proof. If d(p, pq) = d(q, pq), the situation is simple. We see that:

gp,q(p) = M · d(p, q) + d(p, pq) = M · d(p, q) + d(q, pq) = gp,q(q)

Claim 1. d(x, pq) > d(p, pq)
Let us first have a look at what Claim 1 implies.

For vertices other than p and q, we see that either x /∈ I(p, q) makes the
first summand very high or we get:

∀x ∈ I(p, q) − {p, q} : gp,q(x) = M · d(p, q) + d(x, pq) >

> M · d(p, q) + d(p, pq) = gp,q(p)

As a result, the case d(p, pq) = d(q, pq) is solved.

Proof of Claim 1. For contradiction, let us suppose that ∃x ∈ I(p, q)−{p, q}
such that d(x, pq) ≤ d(p, pq). Without loss of generality, we can assume
that d(pq, p) ≤ d(pq, q). Because {a, b, c} is minimal among all median-less
triplets, the smaller triplet {p, pq, x} must have a median u. Since u ∈ I(p, x)
and x ∈ I(p, q), also u ∈ I(p, q).

As a result, the triplet {pq, q, u} must have a median as well, we will
denote the median by v. By definition, this median v belongs to I(pq, q).
Furthermore, since v ∈ I(q, u) and u ∈ I(p, q), then also v ∈ I(p, q). At the
same time, since v ∈ I(pq, u) and u ∈ I(pq, q), then also v ∈ I(pq, q). Putting
it all together, v ∈ Med(p, q, pq), which is a contradiction with {a, b, c} being
median-less. ■

26

Let us move to the (more complicated) case of d(p, pq) > d(q, pq). It would
help us if we knew that any three shortest paths p — q, q — pq, pq — p form
together an isometric cycle in G. However, the following weaker property will
be sufficient.
Claim 2.

∀x ∈ I(p, q) : {p, q} ∩ I(pq, x) ̸= ∅

Proof of Claim 2. Let us suppose for contradiction the negation of the claim.

∃x ∈ I(p, q) : p, q /∈ I(pq, x)

In other words, d(pq, x) < d(pq, i)+d(i, x) for both i = p and i = q. However,
this makes both {pq, q, x} and {pq, p, x} be median-less. That is obviously
in contradiction with {p, q, pq} being a minimal median-less triplet. ■

In order to check which labels fall into arg min(gp,q), we will consider five
possible cases of gp,q(x) according to the location of x with respect to p, q.
I) x = p
II) x = q
III) x /∈ I(p, q)
IV) x ∈ I(p, q) \ {p, q} , p ∈ I(pq, x)
V) x ∈ I(p, q) \ {p, q} , q ∈ I(pq, x)

The previous property implies that our decomposition into the five cases
is comprehensive. For short, let us denote:

α := d(p, q)
d(p, pq) − d(q, pq)

We immediately see that α > 1, because {pq, q, p} is median-less. Using this
notation, we will write:

gp,q(x) = M · fp,q(x) + α · δpq(x) + δp(x)

I)
gp,q(x) = gp,q(p) = M · fp,q(p) + α · d(pq, p) + d(p, p) =

= M · min(fp,q) + α · d(pq, p)

II)
gp,q(x) = gp,q(q) = M · fp,q(q) + α · d(pq, q) + d(p, q) =

= M · min(fp,q) + α · d(pq, q) + d(p, q)

Expanding the definition of α we get:

α · d(pq, q) + d(p, q) =

= d(p, q) · d(pq, q) + (d(p, pq) − d(q, pq)) · d(p, q)
d(p, pq) − d(q, pq) =

= d(p, pq) · d(p, q)
d(p, pq) − d(q, pq) = α · d(p, pq)

27

We got gp,q(q) = gp,q(p). It remains to show that all other values of gp,q are
higher.

III)

gp,q(x) = M · fp,q(x) + α · d(pq, x) + d(p, x) > M · (min(fp,q) + ε) > gp,q(p)

We put ε = d(p, x) + d(q, x) − d(p, q) > 0 and M be sufficiently high.

IV)
We will first use (in the first equality) the definition of g, then we will use
(in the second equality) Lemma 72, then we will use (in the third equality)
that p ∈ I(pq, x), and finally we will use (in the inequality) that x ̸= p.

gp,q(x) = fp,q(x) + α · d(pq, x) + d(p, x) =

= min(fp,q) + α · d(pq, x) + d(p, x) =

= min(fp,q) + α · (d(pq, p) + d(p, x)) + d(p, x) >

> min(fp,q) + α · d(pq, p) = gp,q(p)

V)
We will first use (in the first equality) the definition of g, then we will use
(in the second equality) Lemma 72, then we will use (in the third equality)
that q ∈ I(pq, x), then we will use (in the following inequality) that α > 1,
and finally (in the penultimate equality) we will use that x ∈ I(p, q).

gp,q(x) = fp,q(x) + α · d(pq, x) + d(p, x) =

= min(fp,q) + α · d(pq, x) + d(p, x) =

= min(fp,q) + α · (d(pq, q) + d(q, x)) + d(p, x) >

> min(fp,q) + α · d(pq, q) + d(q, x) + d(p, x) =

= min(fp,q) + α · d(pq, q) + d(q, p) = gp,q(q)

Corollary 74. If (ya, yb, yc, za, zb, zc) minimizes h, then:

ya, za ∈ {b, c} , yb, zb ∈ {a, c} , yc, zc ∈ {a, b}

Proof. The function h is a sum of six calls to the function g. Each call gets
a different (unique) variable. Thus, we can minimize each part independently
of the other parts.

min(h(ya, yb, yc, za, zb, zc)) = min(gb,c(ya)) + min(gb,c(za)) + min(ga,c(yb))+
+ min(ga,c(zb)) + min(ga,b(yc)) + min(ga,b(zc))

It remains to apply Lemma 73 to each summand.

28

Lemma 75. There is a number t ∈ R+ and a tuple (ya, yb, yc, za, zb, zc) ∈ V 6

where ya ̸= za, which minimizes ĥ in such a way that:

• ĥ(ya, yb, yc, za, zb, zc) = ĥ(za, zb, zc, ya, yb, yc) = T

• ĥ(ra, rb, rc, sa, sb, sc) ≥ T + t
for all the other tuples (ra, rb, rc, sa, sb, sc) ∈ V 6

Proof. The function ĥ(ya, yb, yc, za, zb, zc) contains h(ya, yb, yc, za, zb, zc) as a
summand with a very high coefficient. This forces us to narrow down the
possible assignments to exactly those 64 assignments which satisfy the con-
ditions given by Corollary 74.

We claim that the minimum value of ĥ(ya, yb, yc, za, zb, zc) is attained by
the following assignment:

ya = yb = c , yc = za = b , zb = zc = a

We also claim that the only other assignment that gives the same value is
the symmetric one:

za = zb = c , zc = ya = b , yb = yc = a

By plugging them into the definition of ĥ we get:

T = ĥ(c, c, b, b, a, a) = h′(c, c, b, b, a, a) +

+ d(b, c) − d(a, b)
d(b, c) · (δc(c) + δc(b)) + d(b, c) − d(a, b)

d(a, c) · (δc(c) + δc(a)) =

= M · h(c, c, b, b, a, a) + d(c, b) + d(b, a) + d(a, c) +

+ d(b, c) − d(a, b)
d(b, c) · δc(b) + d(b, c) − d(a, b)

d(a, c) · δc(a) =

= M · min(h) + d(c, b) + d(b, a) + d(a, c) + 2 · (d(b, c) − d(a, b)) =
= M · min(h) + 3 · d(b, c) + d(a, c) − d(a, b)

In the symmetric case, the calculation goes exactly the same way.

T = ĥ(b, a, a, c, c, b) = M · min(h) + 3 · d(b, c) + d(a, c) − d(a, b)

In order to prove the uniqueness, we will classify assignments according
to number of changes along the cycle (ya, yb, yc, za, zb, zc) based on the binary
functions inside the definition of h′. By the number of changes we mean:

1[ya ̸=yb] + 1[yb ̸=yc] + 1[yc ̸=za] + 1[za ̸=zb] + 1[zb ̸=zc] + 1[zc ̸=ya]

We will argue that 3 changes are optimal. Note that it is equal to the
number of changes in the assignments above.

Whenever a pair of consecutive variables on the cycle (ya, yb, yc, za, zb, zc)
has different labels, at least d(b, c) is paid extra there, as we will show now.
Let us focus on the following value:

∆ = ĥ(ya, yb, yc, za, zb, zc) − h(ya, yb, yc, za, zb, zc)

29

We will calculate a lower bound for ∆ by enumerating all (three) possible
cases, ignoring whether p follows after q or q follows after p.

• A change between b and c yields ∆ ≥ d(b, c).

• A change between a and c yields ∆ ≥ d(a, c) ≥ d(b, c).

• A change between a and b is more complicated. Note that both values
cannot be attained in variables yc and zc, because we speak about two
consecutive variables in the cycle, where yc is in the antipodal position
to zc.

– If ya = b or za = b, then we get:

∆ ≥ d(a, b) + d(b, c) − d(a, b)
d(b, c) · d(c, b) = d(b, c)

– If yb = a or zb = a, then we get:

∆ ≥ d(a, b) + d(b, c) − d(a, b)
d(a, c) · d(c, a) = d(b, c)

What we got by bounding ∆ ≥ d(b, c) is a lower bound for the price of
a change. Knowing this, we can establish the optimality of exactly 3 changes.
If we have more than 3 changes on our cycle, then:

ĥ(ya, yb, yc, za, zb, zc) ≥ M · min(h) + 4 · d(b, c) = T + t

Now we must check the difference between this and previous values of ĥ.

t = d(a, b) + d(b, c) − d(a, c)

Since {a, b, c} is median-less, Lemma 68 gives us that t > 0.
On the other hand, we can assure that less than 3 changes of a label on

the cycle are incompatible with minimizing ĥ as well, because no consecutive
triplet on the cycle can share one label, and at the same time be compatible
with Corollary 74.

As for labelings with exactly 3 changes, there are only two possibilities
where the changes can occur, because there are only two perfect matchings
of C6. Both of them are shown above.

Lemma 76. There is a number t ∈ R+ and a tuple (ya, yb, yc, za, zb, zc) ∈ V 6

where ya ̸= za, which minimizes ĥ in such a way that:

• ĥ(ya, yb, yc, za, zb, zc) = ĥ(za, zb, zc, ya, yb, yc) = T

• ĥ(ya, yb, yc, ya, yb, yc) = ĥ(za, zb, zc, za, zb, zc) = T + t

• ĥ(ra, rb, rc, sa, sb, sc) ≥ T + t
for all the other tuples (ra, rb, rc, sa, sb, sc) ∈ V 6

These properties are similar to those used in the proof of NP-completeness
of the Minimum 3-Terminal Cut Problem [14].

30

Proof. We will use the same values as in Lemma 75.
ya = yb = c , yc = za = b , zb = zc = a

The first calculation in the second item ĥ(ya, yb, yc, ya, yb, yc) is as follows.

ĥ(c, c, b, c, c, b) = h′(c, c, b, c, c, b) +

+ d(b, c) − d(a, b)
d(b, c) · (δc(c) + δc(c)) + d(b, c) − d(a, b)

d(a, c) · (δc(c) + δc(c)) =

= h′(c, c, b, c, c, b) = M · min(h) + 4 · d(b, c) = T + t

The second calculation in the second item ĥ(za, zb, zc, za, zb, zc) is as follows.

ĥ(b, a, a, b, a, a) = h′(b, a, a, b, a, a) +

+ d(b, c) − d(a, b)
d(b, c) · (δc(b) + δc(b)) + d(b, c) − d(a, b)

d(a, c) · (δc(a) + δc(a)) =

= h′(b, a, a, b, a, a) + 2 · (d(b, c) − d(a, b)) + 2 · (d(b, c) − d(a, b)) =
= M · min(h) + 4 · d(a, b) + 4 · (d(b, c) − d(a, b)) =

= M · min(h) + 4 · d(b, c) = T + t

The rest of the proof follows directly from Lemma 75.

a b

c

xc

xa

xb

ya

yb

yc

za

zb

zc

x y z

a b

c

G

H

d

e

Figure 4: A small example of the reduction. The Max-Cut Problem for the
graph H = ({x, y, z}, {{x, y}, {y, z}}) is reduced to the Minimum 0-Extension
Problem for the graph G = ({a, b, c, d, e}, {{a, b}, {a, c}, {a, e}, {b, c}, {c, d}}).
The faint blue edges (from the previous figure) are omitted here.

31

3.4.2 Analysis of the instances
Lemma 77. There is a tuple (ya, yb, yc, za, zb, zc) ∈ V 6 where ya ̸= za such
that, if a labeling x minimizes m(x), then:

∀w ∈ W :
(︃

(∃v ∈ W : {v, w} ∈ F) =⇒

=⇒
(︂
(xwa , xwb

, xwc) = (ya, yb, yc) ∨ (xwa , xwb
, xwc) = (za, zb, zc)

)︂)︃
Proof. The tuple (ya, yb, yc, za, zb, zc) is provided by Lemma 76. Recall the
objective function:

m(x) =
∑︂

{u,v}∈F

ĥ(xua , xub
, xuc , xva , xvb

, xvc)

For contradiction, let m(x) be minimum and w ∈ W be a vertex that does
not satisfy the condition. Then we take any neighbor v ∈ W : {v, w} ∈ F .

We declare a set U ⊆ W of “ugly vertices”, i.e. vertices whose correspond-
ing variables are labeled by neither (ya, yb, yc) nor (za, zb, zc).

U = {u ∈ W : (xua , xub
, xuc) /∈ {(ya, yb, yc), (za, zb, zc)}}

If (xva , xvb
, xvc) = (ya, yb, yc), then we create a new labeling x∗ as follows.

(x∗
wa

, x∗
wb

, x∗
wc

) := (za, zb, zc)
∀u ∈ U \ {w} : (x∗

ua
, x∗

ub
, x∗

uc
) := (ya, yb, yc)

∀x ∈ W \ U : (x∗
xa

, x∗
xb

, x∗
xc

) := (xxa , xxb
, xxc)

If (xva , xvb
, xvc) ̸= (ya, yb, yc), then we create a new labeling x∗ as follows.

(x∗
wa

, x∗
wb

, x∗
wc

) := (ya, yb, yc)
∀u ∈ U \ {w} : (x∗

ua
, x∗

ub
, x∗

uc
) := (za, zb, zc)

∀x ∈ W \ U : (x∗
xa

, x∗
xb

, x∗
xc

) := (xxa , xxb
, xxc)

Thanks to Lemma 76, all summands of m(x∗) are less than or equal to
T + t. At the same time, whenever any summand of m(x) was equal to T ,
which could happen only when the corresponding edge had both ends in
(W \ U), the corresponding summand in m(x∗) is equal to T as well, because
vertices from (W \ U) get identical labels in x∗ as in x. Finally, the value of
ĥ for the edge {v, w} in m(x∗) is less than the corresponding value in m(x)
by at least t.

In either case regarding (xva , xvb
, xvc), after summing everything together,

we obtain m(x∗) ≤ m(x)−t < m(x). This is a contradiction with m(x) being
minimum.

Theorem 78. If a labeling x minimizes m(x), then

|{{u, v} ∈ F : xua ̸= xva}|

is equal to the size of maximum cut in H.

32

Proof. Let us consider a potentially-minimum labeling x (that is, x satisfies
the necessary condition stated in Lemma 77). With the help of Lemma 76,
we can observe:

m(x) = |F | · T + |{{u, v} ∈ F : xua = xva}| · t

We choose an arbitrary vertex s ∈ W and, for the given labeling x, we define
a set X(x) = {w ∈ W : xwa = xsa}. The condition for minimality of m(x)
implies that ∀{u, v} ∈ F, u /∈ X, v /∈ X : xua = xva . It immediately follows
that:

{{u, v} ∈ F : |{u, v} ∩ X| = 1} = {{u, v} ∈ F : xua ̸= xva}

It is trivial that |{{u, v} ∈ F : xua = xva}| is minimum over all labelings x
if and only if |{{u, v} ∈ F : xua ̸= xva}| is maximum. As a result, if m(x) is
minimum, then X determines the maximum cut of H.

3.5 Hardness result
Corollary 79. If Gw = (V, E, w) is a non-modular good graph, then the
VCSP(ΓGw) is NP-hard.

Proof. Let H = (W, F) be a simple graph and r ∈ N. For an instance (H, r)
of the Max-Cut Problem, we create the following instance of VCSP(ΓGw).

S = {wa, wb, wc : w ∈ W}

m(x) =
∑︂

{u,v}∈F

ĥ(xua , xub
, xuc , xva , xvb

, xvc)

Goal: say YES iff there is any labeling x : S → V such that

m(x) ≤ |F | · T + (|F | − r) · t

where T , t and ĥ is given by Lemma 75. If min(m(x)) ≤ |F | ·T +(|F |−r) · t,
then the size of the maximum cut of H is greater or equal to r, as follows
from our Theorem 78. If min(m(x)) > |F | · T + (|F | − r) · t, then the size
of the maximum cut of H is less than r, for the same reason. Therefore,
our reduction is correct. And, as we already mentioned (see Fact 60), the
Max-Cut Problem is NP-hard.

By checking all steps of the construction (Section 3.3.2), we can easily
see that the reduction is polynomial, because all steps of the construction
are linear in |W | and |F |. As a result, VCSP(ΓGw) is NP-hard.

Corollary 80. The Minimum 0-Extension Problem for any non-modular
good graph is NP-complete.

Proof. Every solution to any (V)CSP has a linear size and it can be verified
in polynomial time. The existence of a polynomial deterministic verification
algorithm is obvious. As a result, the problem is in NP. In conjunction with
Corollary 79 and Lemma 55, we can conclude that the Minimum 0-Extension
Problem for a non-modular good graph is NP-complete.

33

4. NP-completeness for
modular non-orientable graphs
Let us move to the case of non-orientable (see Definition 19) good graphs.
Unlike the previous (less general) Karzanov’s proof [1], we will assume mod-
ularity in the proof for non-orientable graphs, since the case of non-modular
graphs has already been solved.

Figure 5: Example of a modular non-orientable graph (K−
3,3)

4.1 Properties of modular non-orientable graphs
The following Lemma will show that every quadrilateral must be a rectangle.
This is the step where modularity will be used.

Lemma 81. Let Gw = (V, E, w) be a modular good graph. Let (a, b, c, d) be a
simple cycle in Gw of length 4. Then w(a, b) = w(c, d) and w(b, c) = w(d, a).

Proof. Note that the absence of redundant edges forces that {a, c} /∈ E and
{b, d} /∈ E. In other words, the cycle (a, b, c, d) is induced. It has to be the
case that

w(a, b) + w(b, c) = w(c, d) + w(d, a)

because otherwise {a, b, c} or {c, d, a} would be a median-less triplet. In a
similar manner, we observe that:

w(b, c) + w(c, d) = w(d, a) + w(a, b)

Summing both equations together gives:

w(a, b) + 2 · w(b, c) + w(c, d) = w(c, d) + 2 · w(d, a) + w(a, b)

It immediately follows that w(b, c) = w(d, a) and then w(a, b) = w(c, d).

Definition 82. Let G = (V, E) be a graph. Let {v0,..., vk−1, vk,..., v2k−1} ⊆ V
be a set of (not necessarily distinct) vertices such that (vi−1, vi, vk+i, vk+i−1)
is a simple cycle in G for each 0 < i < k, and additionally, (vk−1, vk, v0, v2k−1)
is a simple cycle in G as well. In such a case, we say that (v0, . . . , v2k−1) is an
orientation-reversing dual cycle in G.

34

Unless vertices in (v0, . . . , v2k−1) are repeated, the corresponding subgraph
can be visualized as a möbius strip. However, vertices may be repeated. In
fact, the same “faces” of G can appear as the quadruple (vi−1, vi, vk+i, vk+i−1)
at different positions i in “different rotations” [1].

For instance, such a configuration inevitably appears when considering
an orientation-reversing dual cycle in the (non-orientable) graph K−

3,3.

Fact 83. A graph G is non-orientable if and only if [1] there exists an
orientation-reversing dual cycle in G.

4.2 Construction of the model
We are given a fixed non-orientable modular good graph Gw = (V, E, w). We
take one arbitrary orientation-reversing dual cycle (a0, . . . , a2k−1) in Gw and
we fix it to be “the” orientation-reversing dual cycle. In the end, we define a
new symbol a2k := a0 in order to make indexing easier.

a0 a1
a2

a3 a4 a5 a6 a7

a8 a9
a10

a11 a12 a13 a14 a15

We will construct new functions f , g, h, and m; different from those used in
the construction for non-modular graphs. We start with an easy-to-imagine
function f .

fu
v (x, y) = δu(x) + δv(x) + δu(y) + δv(y)

In a major part of our construction, we work with 2k variables (z0, . . . , z2k−1),
which we denote z̄ for brevity. We furthermore define z2k := z0 for our
convenience. A composite function g follows.

g(z̄) = fa0
ak

(z0, zk) + fa1
ak+1

(z1, zk+1) + · · · + fak−1
a2k−1

(zk−1, z2k−1)

Let M be a sufficiently large constant that depends only on G. Using the
above-defined function g and a sufficiently-high value M , a function h follows.

h(z̄) = M · g(z̄) + d(z0, z1) + d(z1, z2) + · · · + d(z2k−1, z2k)

In the end, we get the objective function by summing h over all edges of the
Max-Cut graph H = (W, F). Our VCSP(ΓGw) instance (with variable set S,
labeling x, and objective function m) is built as follows.

S = {w0, w1, . . . , wk−1 : w ∈ W}

m(x) =
∑︂

{u,v}∈F

h(xu0 , xu1 , . . . , xuk−1 , xv0 , xv1 , . . . , xvk−1)

35

4.3 Analysis of the model
Lemma 84. Let {u, v} ∈ E. Let f be the function V 2 → Q as defined in
Section 4.2.

arg min(fu
v) = {(u, u), (u, v), (v, u), (v, v)}

Proof. Let us define a unary function f̂
u

v(x) = δu(x) + δv(x) , which is a part
of original f , because fu

v (x, y) = f̂
u

v(x) + f̂
u

v(y). Since d is a metric, the
triangle inequality tells us that

f̂
u

v(u) = d(u, v) = f̂
u

v(v)

is the minimum of f̂ . The non-redundancy of the edge {u, v} implies that:

∀w ∈ (V \ {u, v}) : f̂
u

v(w) > d(u, v)

Therefore, arg min(f̂u

v) = {u, v}, and thus arg min(fu
v) = {u, v} × {u, v}.

Lemma 85. Let h be the function V 2k → Q as defined in Section 4.2.

arg min(h) = {(a0, a1, . . . , a2k−1), (ak, ak+1, . . . , a2k−1, a0, a1, . . . , ak−1)}

Proof. The definition of the orientation-reversing dual cycle, together with
Lemma 81, implies that:

w(a0, ak) = w(a1, ak+1) = · · · = w(ak−1, a2k−1)

Lemma 81 also implies that:

∀i ∈ {0, 1, . . . k − 1} : w(ai, ai+1) = w(ai+k, ai+k+1)

We denote as the circumference of the cycle by:

q := w(a0, a1) + · · · + w(a2k−1, a2k) = 2 · (w(a0, a1) + · · · + w(ak−1, ak))

Now we consider the value which we want to prove to be the minimum:

h(a0, a1, . . . , a2k−1) = 2kM · w(a0, ak) + q

If we rotate the assignment by k positions, we get the same value:

h(ak, ak+1, . . . , a2k−1, a0, a1, . . . , ak−1) = 2kM · w(a0, ak) + q

What do we know about general value h(z̄)? Since only one summand in
h is multiplied by M , it is obvious that in order to minimize h(z̄), we have
to minimize g(z̄). Lemma 84, when applied to each summand in g, implies
that:

∀i ∈ {0, 1, . . . k − 1} : zi, zi+k ∈ {ai, ai+k}

36

In the rest of this proof, we will consider only potentially-minimum vectors z̄,
i.e. restricted to zi, zi+k ∈ {ai, ai+k}. Let us count the number of “switches
between long cycles”.

J(z̄) := {i ∈ {0, 1, . . . 2k − 1} | (zi, zi+1) /∈ {(ai, ai+1), (ai+k, ai+k+1)}}

Let us denote s(z̄) := |J(z̄)|. Without loss of generality, we choose i such
that zi = ai , zi+1 = ai+k+1. Modularity of G implies that {ai, ai+k, ai+k+1}
must have a median. We see that I(ai, ai+k) = {ai, ai+k} (otherwise the edge
{ai, ai+k} ∈ E would be redundant) and that I(ai+k, ai+k+1) = {ai+k, ai+k+1}
(otherwise the edge {ai+k, ai+k+1} ∈ E would be redundant). We obtained
I(ai, ai+k) ∩ I(ai+k, ai+k+1) = {ai+k}, so the vertex ai+k must be the median
of {ai, ai+k, ai+k+1}, thus:

d(ai, ai+k+1) = w(ai, ai+k) + w(ai+k, ai+k+1)

Note that w(ai+k, ai+k+1) is already included in q, but w(ai, ai+k) will be paid
for each switch between long cycles, where w(ai, ai+k) has always the same
value as w(a0, ak). As a result:

h(z̄) = 2kM · w(a0, ak) +
+

(︂
q −

∑︂
i∈J(z̄)

w(ai+k, ai+k+1)
)︂

+
∑︂

i∈J(z̄)

(︂
w(ai, ai+k) + w(ai+k, ai+k+1)

)︂
This can be simplified to:

h(z̄) = 2kM · w(a0, ak) + q +
∑︂

i∈J(z̄)
w(ai, ai+k)

Putting everything together gives:

h(z̄) = h(a0, a1, . . . , a2k−1) + s(z̄) · w(a0, ak)

It is easy to check that s(z̄) = 0 implies that:

z̄ ∈ {(a0, a1, . . . , a2k−1), (ak, ak+1, . . . , a2k−1, a0, a1, . . . , ak−1)}

Since Gw is a good graph, w(a0, ak) > 0, thus the arg min(h) contains only
the two vectors (a0, a1, . . . , a2k−1) and (ak, ak+1, . . . , a2k−1, a0, a1, . . . , ak−1).

Lemma 86. There is a number T ∈ R and a number t ∈ R+ such that the
vector (a0, a1, . . . , a2k−1) ∈ V 2k, where a0 ̸= ak, minimizes h in such a way
that:

• h(a0, a1, . . . , a2k−1) = h(ak, ak+1, . . . , a2k−1, a0, a1, . . . , ak−1) = T

• h(a0, a1, . . . , ak−2, ak−1, a0, a1, . . . , ak−2, ak−1) = T + t

• h(ak, ak+1, . . . , a2k−2, a2k−1, ak, ak+1, . . . , a2k−2, a2k−1) = T + t

• h(z̄) ≥ T + t for all other vectors z̄ ∈ V 2k

37

Proof. Since z0 = z2k, the value of s(z̄) is always pair for zi, zi+k ∈ {ai, ai+k}.
From Lemma 84, we know that in order to have h(z̄) = T + o(M), we are
bound to zi, zi+k ∈ {ai, ai+k}. It follows that h(a0, a1, . . . , a2k−1)+2·w(a0, ak)
is the second lowest value of the function h.

As a result, we can define T := 2kM · w(a0, ak) + q, and t := 2 · w(a0, ak).
It remains to check that the desired value T + t is met by the two vectors
(see item 2 and item 3 of the Lemma).

J(a0, a1, . . . , ak−2, ak−1, a0, a1, . . . , ak−2, ak−1) = {k − 1, 2k − 1}

J(ak, ak+1, . . . , a2k−2, a2k−1, ak, ak+1, . . . , a2k−2, a2k−1) = {k − 1, 2k − 1}

It follows that:

h(a0, a1, . . . , ak−2, ak−1, a0, a1, . . . , ak−2, ak−1) = T + t

h(ak, ak+1, . . . , a2k−2, a2k−1, ak, ak+1, . . . , a2k−2, a2k−1) = T + t

They are not the only two vectors z̄ which give h(z̄) = T + t, but the
uniqueness is not needed here. Only the minimum value T is constrained to
be met by unique two vectors. These two vectors (see item 1) are provided
by Lemma 85 with a proof of their uniqueness.

4.4 Hardness results
Definition 87. Let Γ be a finite-valued constraint language. We define ⟨Γ⟩
to be the set of all functions f(x1, . . . , xn) such that there exists an instance I
of VCSP(Γ) with an objective function Φ(x1, . . . , xn, xn+1, . . . , xs) with the
following property.

f(x1, . . . , xn) = min
(xn+1,...,xs)∈Ds−n

Φ(x1, . . . , xn, xn+1, . . . , xs)

The set ⟨Γ⟩ is sometimes called an expressive power [46] of the finite-valued
constraint language Γ.

Observation 88. Let Γ be a fixed finite-valued constraint language. If I
is an instance of VCSP(Γ), we can introduce new variables for any subset
of arguments of any function calls used in I, with only a constant overhead
in the size of the instance (where the multiplicative constant depends on Γ,
which is fixed), and reorder the arguments in any way, without changing how
hard it is to solve the instance.

We observe that VCSP(Γ) has the same complexity as VCSP(⟨Γ⟩). The
language ⟨Γ⟩ can therefore be a useful tool for obtaining lower bounds for
the complexity of the problem VCSP(Γ).

38

Theorem 89. If Gw = (V, E, w) is a modular non-orientable good graph,
then the VCSP(ΓGw) is NP-complete.

Proof. It is easy to see that the problem is in NP.
As for NP-hardness, we will use the condition (MC) from [47]. We declare

a new function h̄ based on the function h.

h̄(x, y) := min
z̄∈V 2k

h(x, z1, . . . , zk−2, zk−1, y, zk+1, . . . , z2k−2, z2k−1)

We can see that h̄ ∈ ⟨ΓGw⟩. Lemma 86 implies:

h̄(a0, a0) = h̄(ak, ak) > h̄(a0, ak) = h̄(ak, a0)

We have observed that fa0
ak

is a function such that arg min(fa0
ak

) = {a0, ak}.
The existence of the binary function h̄, together with the existence of the
unary function fa0

ak
, provides the condition (MC) from [47]. A theorem from

[47] (based on a weaker proposition from [48] regarding General-Valued CSP)
implies that VCSP(⟨ΓGw⟩) is NP-hard, thus VCSP(ΓGw) is NP-hard as well.
As a result, the problem VCSP(ΓGw) is NP-complete.

Alternatively, we could have instead used that Lemma 85 implies that
arg min(h̄) = {(a0, ak), (ak, a0)}. This provides a slightly different condition
(MC) from [46].

To avoid confusion, we better note that the original condition (MC) from
[47] is denoted by (MC’) in [46].

Either way, the condition (MC) or (MC’) provides a reduction from the
Max-Cut Problem which we know to be NP-hard. We could have constructed
the reduction ourselves, as we did in the proof for non-modular graphs, but an
explicit construction would be slightly more complicated here, so we decided
to use the modern results from [47] or [46] instead.

It could be worth mentioning that another theorem from [46], based on the
works of [49], also implies that ΓGw cannot admit any symmetric fractional
polymorphism (see Definition 95).

Corollary 90. The Minimum 0-Extension Problem for any non-orientable
good graph is NP-complete.

Proof. By definition, a non-orientable good graph is either a non-orientable
non-modular good graph or a non-orientable modular good graph. We have
established the NP-completeness for both cases (see Corollary 80 for the
former and Theorem 89 for the latter result). As the final step, we apply
Lemma 55.

39

5. Easy cases
In this chapter, we attempt to generalize some of the positive results about
the Minimum 0-Extension Problem from simple graphs to weighted graphs.
That is, we attempt to identify a certain subset of modular orientable good
graphs such that, for every good graph Gw from this subset, the Minimum
0-Extension Problem for Gw can be computed in polynomial time.

5.1 Algebraic tools
In this section, we introduce tools related to the following auxiliary task.
We are given two (or more) solutions to a particular subproblem. Can we
combine them together to create a new solution with some useful properties?
Definition 91. Let ω be a function of the type (Dm → D) → Q+

0 such that∑︁
g: Dm→D ω(g) = 1. We say that ω is a an m-ary fractional operation on D.

We define supp(ω) = {g : Dm → D | ω(g) > 0}.
On the informal level, we could say that “applying ω” corresponds to

“applying g with probability ω(g) for every g in supp(ω)” where each applying
is elementwise, using the same g at all positions. However, the values ω(g)
are in fact weights, not probabilities.

On the formal level, we need only to define what it means to apply a cost
function f to the fractional operation ω of an m-tuple of inputs (x1, . . . , xm).
We have f : Dn → Q , ω : (Dm → D) → Q+

0 , and xi ∈ Dn for all 1 ≤ i ≤ m.

f
(︂
ω(x1, . . . , xm)

)︂
=

=
∑︂

g∈supp(ω)
ω(g) · f

(︂
g(x1[1], ..., xm[1]), , g(x1[n], ..., xm[n])

)︂
Definition 92. Let f : Dn → Q be a cost function (of arity n). Let ω be
an m-ary fractional operation on D. We say that the cost function f admits
the fractional operation ω if:

∀x1 ∈ Dn . . . ∀xm ∈ Dn : f
(︂
ω(x1, . . . , xm)

)︂
≤ 1

m
·

m∑︂
i=1

f(xi)

Definition 93. Let Γ be a finite-valued constraint language over D. Let ω
be a fractional operation on D. If all cost functions from Γ admit ω, then
we say that ω is a fractional polymorphism for Γ.
Definition 94. An m-ary operation g is symmetric if it preserves its output
under all permutations of its inputs.

∀(x1, . . . , xm)∈Dm ∀π ∈ Sm : g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m))

For m = 2, the notion of a symmetric operation is equivalent to the notion
of a commutative operation, i.e. ∀x, y ∈ D : g(x, y) = g(y, x).
Definition 95. Let ω be a fractional polymorphism for Γ. If all operations
in supp(ω) are symmetric, then we say that ω is a symmetric fractional
polymorphism for Γ.

40

5.2 Linear optimization tools
In this section, we present powerful tools that stem from the study of linear
functions and linear inequalities.
Definition 96. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. A linear program is a task
to search for a vector x ∈ Rn such that Ax ≤ b holds and cTx is minimum.
Fact 97. A linear program can be solved in a polynomial time, e.g. by using
the ellipsoid method [50], thus the decision version is in P.

In practice, however, the simplex method is used instead. Even though
the simplex method has weaker theoretical guarantees — its worst-case time
complexity is exponential [51], it runs surprisingly fast in typical examples;
and it was (much later) proved that the average-case time complexity of the
simplex method is polynomial [52].
Definition 98. Let Γ be a finite-valued constraint language over a domain D.
Let I = (S, D, Φ, R) be an instance of VCSP(Γ). Basic LP Relaxation (where
“LP” stands for “Linear Program”) is defined as follows [10] (but the first
appearance of a similar technique found in [53]).

Variables will be written in the form of functions. Informally speaking,
λϕ corresponds to the joint distribution of arguments of the cost function ϕ,
whereäs βs corresponds to the marginal distribution of the variable s.

∀ϕ ∈ Φ ∀xϕ ∈ Dar(ϕ) : λϕ(xϕ) ≥ 0

∀s ∈ S ∀a ∈ D : βs(a) ≥ 0
We will denote the variable used as the j-th argument of the cost function ϕ
in the instance I using a locally-defined notation S[[I, ϕ, j]]. Linear program:

BLP(I) = min
∑︂
ϕ∈Φ

⎛⎜⎝ ∑︂
xϕ ∈Dar(ϕ)

λϕ(xϕ) · ϕ(xϕ)

⎞⎟⎠
∀ϕ ∈ Φ ∀j ∈ {1, . . . , ar(ϕ)} ∀a ∈ D :

∑︂
xϕ∈Dar(ϕ):

xϕ[j]=a

λϕ(xϕ) = βS[[I,ϕ,j]](a)

∀s ∈ S :
∑︂
a∈D

βs(a) = 1

In order to turn it into a decision variant, we add the condition BLP(I) ≤ R.
Formally written, we have to replace the first line by the explicit inequality
condition: ∑︂

ϕ∈Φ

⎛⎝ ∑︂
x∈Dar(ϕ)

λϕ(x) · ϕ(x)
⎞⎠ ≤ R

The value BLP(I) provides a lower bound for the solution of the instance I.
In particular BLP(I) > R implies that I is not satisfiable. If there exists an
integer solution that attains the minimum value of BLP(I), then BLP(I) ≤ R
implies that I is satisfiable and the labeling x such that ∀s ∈ S : βs(xs) = 1
is the corresponding solution of the instance I.

If every instance I of VCSP(Γ) has an integer solution that attains the
minimum value of BLP(I), then we say that the Basic LP Relaxation solves
VCSP(Γ).

41

5.3 Results
In this section, we will prove that, for two special types of the template Gw,
the Minimum 0-Extension Problem for Gw is in P.

Lemma 55 is implicitly used in both theorems. These positive results
are presented as the last part of this work for a reason. We will utilize the
newly-introduced tools (fractional polymorphisms and linear programming)
in both proofs so we will not have to construct the polynomial algorithms
explicitly.

Fact 99. Existence of a (binary) symmetric fractional polymorphism for Γ
implies [49] that the Basic LP Relaxation solves VCSP(Γ), thus VCSP(Γ)∈P.

Theorem 100. Let Gw = (V, E, w) be a good graph. If |E| = |V | − 1 and
there exists a simple path of length |E| in G, then the VCSP(ΓGw) is in P.

Informally speaking, the above-mentioned condition says “If G is a path”.

Proof. We construct a symmetric binary fractional polymorphism for ΓGw .
We start by operations l for “left” and r for “right”. We name the vertices
in such a way that V = (v1, v2, . . . , vn) form a (simple) path. If a ≤ b, we let
l(va, vb) = va and r(va, vb) = vb, else we let l(va, vb) = vb and r(va, vb) = va.
Then, we define a symmetric binary fractional operation ω by setting weights
ω(l) = 1/2 = ω(r).

It is trivial to check that all unary functions from ΓGw admit ω. Let
us move to the binary function d(u, v) that measures the distance between
labels assigned to two adjacent vertices u and v.

We are given two solutions x, y : S → V . We are interested in comparing
d(xu, xv) + d(yu, yv) against d(l(xu, yu), l(xv, yv)) + d(r(xu, yu), r(xv, yv)).

We define a relation ≼ which means “is to the left of (or identical to)”,
formally:

a ≼ b ⇐⇒ l(a, b) = a ⇐⇒ r(a, b) = b
If a = va and b = vb, we can also state:

a ≼ b ⇐⇒ a ≤ b

Without loss of generality, we can assume xu ≼ yu. Generality is not lost
because we can swap x with y because all cost functions and operations we
work with are commutative.

There are two main cases we need to care about. Either v’s are in the
same order as u’s, that is xv ≼ yv, or v’s are in the opposite order to u’s,
that is xv ≻ yv. The first case implies

d(l(xu, yu), l(xv, yv)) + d(r(xu, yu), r(xv, yv)) = d(xu, xv) + d(yu, yv)

by the identity between all 4 arguments at respective positions. The second
case leads to comparing d(xu, xv) + d(yu, yv) against d(xu, yv) + d(yu, xv).
For the sake of brevity, we declare symbols P and Q as:

P := d(xu, xv) + d(yu, yv)

Q := d(xu, yv) + d(yu, xv)
We want Q ≤ P .

42

This inequality would mean that ω made the cost “cheaper”. A proof by
exhaustion follows. The third case will be accompanied by an explanatory
illustration.

There are 24 permutations of the symbols {“xu”, “yu”, “xv”, “yv”} in total.
Only 6 of them place “xu” before “yu” and at the same time “yv” before “xv”.

• If xu ≼ yu ≼ yv ≼ xv then:

P = d(xu, xv) + d(yu, yv) Q = d(xu, xv) + d(yu, yv) P = Q

• If xu ≼ yv ≼ yu ≼ xv then:

P = d(xu, xv) + d(yv, yu) Q = d(xu, xv) − d(yv, yu) P ≥ Q

• If xu ≼ yv ≼ xv ≼ yu then:

P = d(xu, yu) + d(yv, xv) Q = d(xu, yu) − d(yv, xv) P ≥ Q

xu yv xv yu

x

y

l r

P

Q

• If yv ≼ xv ≼ xu ≼ yu then:

P = d(yv, yu) + d(xv, xu) Q = d(yv, yu) + d(xv, xu) P = Q

• If yv ≼ xu ≼ xv ≼ yu then:

P = d(yv, yu) + d(xu, xv) Q = d(yv, yu) − d(xu, xv) P ≥ Q

• If yv ≼ xu ≼ yu ≼ xv then:

P = d(yv, xv) + d(xu, yu) Q = d(yv, xv) − d(xu, yu) P ≥ Q

In all cases, we got Q ≤ P . We recall that l(xu, yu) = xu, r(xu, yu) = yu,
l(xv, yv) = yv, r(xv, yv) = xv; and that we put Q = d(xu, yv) + d(yu, xv),
P = d(xu, xv) + d(yu, yv); thus we have:

d(l(xu, yu), l(xv, yv)) + d(r(xu, yu), r(xv, yv)) ≤ d(xu, xv) + d(yu, yv)

We divide the inequality by two and obtain:

d
(︂
ω((xu, xv), (yu, yv))

)︂
≤ 1

2 ·
(︂
d(xu, xv) + d(yu, yv)

)︂
We conclude that d admits ω. We already know that all δv1 , . . . , δvn admit ω
as well. We have checked every cost function from ΓGw . It is easy to check
that both operations l and r are symmetric, thus ω is a symmetric fractional
polymorphism. As a result, Fact 99 implies that VCSP(ΓGw) ∈ P.

43

Theorem 101. Let h and s be positive rational numbers. Let Gw = (V, E, w)
be a (good) graph exactly in this form (where a, b, c, d are vertices; and h, s
are weights of the edges):

s

h

s

h

a b

cd

Then the VCSP(ΓGw) is in P.

Proof. We provide the following symmetric binary fractional polymorphism
for ΓGw . We start with defining two operations (p and q) by explicit tables.

p a b c d
a a a d d
b a b c d
c d c c d
d d d d d

q a b c d
a a b b a
b b b b b
c b b c c
d a b c d

We easily check that both the operations p and q are symmetric. We define
a binary fractional operation ω by setting the weights to ω(p) = 1/2 = ω(q).

We will first check whether all unary cost functions admit ω. This will be
easy since almost all pairs x, y ∈ V give {p(x, y), q(x, y)} = {x, y} and thus
preserve the result of δv(x) + δv(y) unchanged for every v ∈ V . The only
different pair of values is {a, c}, which gets mapped to {b, d}. Fortunately,
we have:

δa(a) + δa(c) = 0 + (s + h) = s + h = δa(b) + δa(d)
δb(a) + δb(c) = s + h = 0 + (s + h) = δb(b) + δb(d)
δc(a) + δc(c) = (s + h) + 0 = h + s = δc(b) + δc(d)
δd(a) + δd(c) = h + s = (s + h) + 0 = δd(b) + δd(d)

We have checked that all four unary cost functions {δa, δb, δc, δd} admit ω.
As a matter of fact, they always do so with equality. It remains to check the
binary cost function (distance d) for admitting ω.

We are interested in the value d(u, v). We are given two labelings: x, y.
This gives us four relevant variables: xu, xv, yu, yv. Each variable can be
assigned any value from V = {a, b, c, d}. This makes 44 = 256 possibilities
in total.

The form of the admissibility condition (whether d admits ω) is the
following system of inequalities.

∀ (xu, xv, yu, yv) ∈ {a, b, c, d}4 :
d(xu, xv) + d(yu, yv) ≥ d(p(xu, yu), p(xv, yv)) + d(q(xu, yu), q(xv, yv))

44

In order to simplify our task of checking these 256 inequalities, we will add
a few symmetry-breaking conditions. We first recall that d(u, v) = d(v, u).
This allows us to swap (xu, yu) with (xv, yv). At the same time, the symmetry
of ω (i.e. the property that both p and q are commutative operations) allows
us to swap (xu, xv) with (yu, yv). As a consequence, we are free to require:

• The label xu is (alphabetically) smallest.

• If xu = xv, then yu is (alphabetically) before yv.

• If xu = yu, then xv is (alphabetically) before yv.

• If xu = yv, then xv is (alphabetically) before yu.

We will represent the admissibility condition schematically as follows. The
cost function d is applied on rows. The fractional operation ω is applied on
columns.

xu xv → dx
yu yv → dy

p(xu, yu) p(xv, yv) → dp

q(xu, yu) q(xv, yv) → dq

=⇒ dx + dy ≥ dp + dq

We finish our proof by exhaustion. In order to save horizontal space, we will
denote the sum h + s by R, so we will have d(a, c) = R = d(b, d).

xu = d :
d d → 0
d d → 0
d d → 0
d d → 0

✓

xu = c :

c c → 0
c c → 0
c c → 0
c c → 0

✓

c c → 0
c d → s
c d → s
c c → 0

✓

c c → 0
d d → 0
d d → 0
c c → 0

✓

c d → s
c d → s
c d → s
c d → s

✓

c d → s
d c → s
d d → 0
c c → 0

✓

c d → s
d d → 0
d d → 0
c d → s

✓

xu = b :

b b → 0
b b → 0
b b → 0
b b → 0

✓

b b → 0
b c → h
b c → h
b b → 0

✓

b b → 0
b d → R
b d → R
b b → 0

✓

b b → 0
c c → 0
c c → 0
b b → 0

✓

45

b b → 0
c d → s
c d → s
b b → 0

✓

b b → 0
d d → 0
d d → 0
b b → 0

✓

b c → h
b c → h
b c → h
b c → h

✓

b c → h
b d → R
b d → R
b c → h

✓

b d → R
b d → R
b d → R
b d → R

✓

b c → h
c b → h
c c → 0
b b → 0

✓

b c → h
d b → R
d c → s
b b → 0

✓

b d → R
d b → R
d d → 0
b b → 0

✓

b c → h
c c → 0
c c → 0
b c → h

✓

b c → h
c d → s
c d → s
b c → h

✓

b d → R
c c → 0
c d → s
b c → h

✓

b c → h
d c → s
d c → s
b c → h

✓

b c → h
d d → 0
d d → 0
b c → h

✓

b d → R
c d → s
c d → s
b d → R

✓

b d → R
d c → s
d d → 0
b c → h

✓

b d → R
d d → 0
d d → 0
b d → R

✓

xu = a; with at least 3 a’s :

a a → 0
a a → 0
a a → 0
a a → 0

✓

a a → 0
a b → s
a a → 0
a b → s

✓

a a → 0
a c → R
a d → h
a b → s

✓

a a → 0
a d → h
a d → h
a a → 0

✓

xu = a; with exactly 2 a’s :

a a → 0
b b → 0
a a → 0
b b → 0

✓

a a → 0
b c → h
a d → h
b b → 0

✓

a a → 0
b d → R
a d → h
b a → s

✓

a a → 0
c c → 0
d d → 0
b b → 0

✓

a a → 0
c d → s
d d → 0
b a → s

✓

a a → 0
d d → 0
d d → 0
a a → 0

✓

a b → s
a b → s
a b → s
a b → s

✓

a b → s
a c → R
a c → R
a b → s

✓

a b → s
a d → h
a d → h
a b → s

✓

a c → R
a c → R
a c → R
a c → R

✓

a c → R
a d → h
a d → h
a c → R

✓

a d → h
a d → h
a d → h
a d → h

✓

a b → s
b a → s
a a → 0
b b → 0

✓

a b → s
c a → R
d a → h
b b → 0

✓

a b → s
d a → h
d a → h
a b → s

✓

a c → R
c a → R
d d → 0
b b → 0

✓

46

a c → R
d a → h
d d → 0
a b → s

✓

a d → h
d a → h
d d → 0
a a → 0

✓

xu = a; with no other a :

a b → s
b b → 0
a b → s
b b → 0

✓

a b → s
b c → h
a c → R
b b → 0

✓

a b → s
c b → h
d b → R
b b → 0

✓

a c → R
b b → 0
a c → R
b b → 0

✓

a b → s
d b → R
d b → R
a b → s

✓

a d → h
b b → 0
a d → h
b b → 0

✓

a b → s
b d → R
a d → h
b b → 0

✓

a b → s
c c → 0
d c → s
b b → 0

✓

a c → R
b c → h
a c → R
b c → h

✓

a c → R
c b → h
d c → s
b b → 0

✓

a b → s
c d → s
d d → 0
b b → 0

✓

a b → s
d c → h
d c → h
a b → s

✓

a c → R
b d → R
a d → h
b c → h

✓

a d → h
b c → h
a d → h
b c → h

✓

a c → R
d b → R
d c → h
a b → s

✓

a d → h
c b → h
d d → 0
b b → 0

✓

a b → s
d d → 0
d d → 0
a b → s

✓

a d → h
b d → R
a d → h
b d → R

✓

a d → h
d b → R
d d → 0
a b → s

✓

a c → R
c c → 0
d c → s
b c → h

✓

a c → R
c d → s
d d → 0
b c → h

✓

a c → R
d c → s
d c → s
a c → R

✓

a d → h
c c → 0
d d → 0
b c → h

✓

a c → R
d d → 0
d d → 0
a c → R

✓

a d → h
c d → s
d d → 0
b d → R

✓

a d → h
d c → s
d d → 0
a c → R

✓

a d → h
d d → 0
d d → 0
a d → h

✓

We have checked the required inequality in 1 case where xu = d, in 6 cases
where xu = c, in 20 cases where xu = b, and in 49 cases where xu = a. All
of them hold. That makes 76 cases in total.

Let us analyze whether they are all there is. We must calculate how
many inequalities were thrown away by the symmetry-breaking conditions.

47

If the quadruple (xu, xv, yu, yv) has labels symmetric with respect to exactly
one of {the vertical axis, or the horizontal axis, or both of the diagonal axes},
then the symmetry-breaking conditions made us check two inequalities at the
same time. If the quadruple (xu, xv, yu, yv) has none of the above-mentioned
symmetries, then the symmetry-breaking conditions made us check four
inequalities at the same time.

Let us count how many instances of each symmetry we had. It is an
easy combinatorial task in which we are choosing labels for the quadruple
(xu, xv, yu, yv) from four possible values {a, b, c, d}.

• Fully symmetric, that is xu = xv = yu = yv:
possible 4 choices

• Vertically symmetric, that is xu = xv and yu = yv, but not fully symm.:
possible 12 choices

• Horizontally symm., that is xu = yu and xv = yv, but not fully symm.:
possible 12 choices

• Diagonally symm., that is xu = yv and xv = yu, but not fully symm.:
possible 12 choices

Counting up to symmetries:

4
1 + 12

2 + 12
2 + 12

2 + 256 − 4 − 12 − 12 − 12
4 =

= 4 + 6 + 6 + 6 + 54 = 76

This is equal to the number of inequalities that we have checked. We have
not forgotten anything.

We have verified that the binary cost function d admits the fractional
operation ω. The unary cost functions and the symmetricity property were
discussed at the beginning of this proof.

As a result, we have learnt that ω is a symmetric fractional polymorphism.
Using Fact 99, we conclude that the VCSP(ΓGw) is in P.

Remark 102. We could have used the Burnside’s Lemma [54] [55] for the
final check in the proof of Theorem 101. The calculation would go as follows.

Our group of symmetries is isomorphic to the Klein group [56] (it has two
generators: the swap between x, y and the swap between u, v). The numbers
of fixed points are 16, 16, 16, and 256, respectively. Their arithmetic average
is equal to 76. This is equal to the number of inequalities we checked in the
proof.

Remark 103. The assumptions that w(a, b) = w(c, d) and w(a, d) = w(b, c)
in Theorem 101 seem to be necessary. Unless P = NP (see Observation 51),
any of w(a, b) ̸= w(c, d) or w(a, d) ̸= w(b, c) would make the good graph Gw
be non-modular (see Lemma 81) which would in turn make the VCSP(ΓGw)
be NP-complete (see Corollary 80).

48

6. Conclusion
We first summarized the basics of graph theory, of complexity theory, and of
the CSP. We put emphasis on the fixed-language Finite-Valued CSP, which
we used as the model in all our proofs. Constructions of reductions followed.
We showed that the Minimum 0-Extension Problem is NP-complete for all
good non-modular graphs and for all good non-orientable graphs as well. We
thereby generalized two Karzanov’s [1] negative results from simple graphs to
weighted graphs. In the last chapter, we introduced modern algebraic tools
used for solving the VCSP efficiently. We showed two positive results using
these tools — most notably, that the Minimum 0-Extension Problem for a
“weighted pathgraph” is in P.

This thesis was assigned two goals. The main goal of this thesis was
to generalize the hardness proof regarding the non-modular graphs to the
weighted non-modular graphs. This goal was fully reached. The secondary
goal was to determine which special classes of the weighted graphs allowed for
a fast algorithm. This goal was fulfilled only to a small extend. Apart from
that, we reached an additional goal by generalizing also the hardness proof
regarding the non-orientable graphs to the weighted non-orientable graphs.

⋆ ⋆ ⋆

About two weeks after finishing my main proof (the one about non-modular
graphs), I accidentally learnt that this result had already been discovered
and published [57] in 2004 by Karzanov.

I conclude that I independently discovered an alternative proof of the
same theorem. My proof uses a different formalism (the fixed-language
Finite-Valued CSP, as opposed to metric spaces). The main idea of my proof
is the same as the Karzanov’s because we both built our reduction from the
Max-Cut Problem based on the “submodularity counterexample” regarding
the 3-Terminal Cut Problem [14]; and also using ideas from the previous (less
general) proof of NP-completeness for simple graphs [1]. However, most of
my techniques and details are different from those used by Karzanov in [57].

49

Bibliography
[1] A. V. Karzanov. Minimum 0-Extensions of Graph Metrics. European

Journal of Combinatorics, 19(1):71–101, 1998.

[2] V. Chepoi. A multifacility location problem on median spaces. Discrete
Applied Mathematics, 64(1):1–29, 1996.

[3] Jakob Krarup and Cornelis Roos. On the Fermat point of a triangle.
Nieuw Archief voor Wiskunde, 5/18:280–286, 2017.

[4] Thomas Simpson. The doctrine and application of fluxions. Before the
Textbook, 1737.

[5] Antoon Kolen. Tree network and planar rectilinear location theory. CWI
Tracts. CWI, 1986.

[6] Howard Karloff, Subhash Khot, Aranyak Mehta, and Yuval Rabani.
On Earthmover Distance, Metric Labeling, and 0-Extension. SIAM J.
Comput., 39:371–387, 2009.

[7] J. Kleinberg and E. Tardos. Approximation algorithms for classification
problems with pairwise relationships: metric labeling and Markov
random fields. In 40th Annual Symposium on Foundations of Computer
Science (Cat. No.99CB37039), pages 14–23, New York City, NY, USA,
1999. IEEE Comput. Soc.

[8] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-6(6), 1984.

[9] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and
How to Use Them. In Andrei Krokhin and Stanislav Zivny, editors,
The Constraint Satisfaction Problem: Complexity and Approximability,
volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

[10] Andrei Krokhin and Stanislav Živný. The Complexity of Valued CSPs.
In The Constraint Satisfaction Problem: Complexity and Approximabil-
ity, volume 7 of Dagstuhl Follow-Ups, pages 233–266. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2017.

[11] L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network.
Canadian Journal of Mathematics, 8:399–404, 1956. Publisher: Cam-
bridge University Press.

[12] Jean-Claude Picard and H. Donald Ratliff. A Cut Approach to the
Rectilinear Distance Facility Location Problem. Operations Research,
26(3):422–433, 1978. Publisher: INFORMS.

50

[13] Antoon Kolen. Equivalence between the Direct Search Approach and the
Cut Approach to the Rectilinear Distance Location Problem. Operations
Research, 29(3):616–620, 1981. Publisher: INFORMS.

[14] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis. The Complexity of Multiterminal Cuts. SIAM Journal
on Computing, 23(4):864–894, 1994.

[15] R. Ram Kumar and B. Kannan. Median Sets and Median Number of a
Graph. ISRN Discrete Mathematics, 2012.

[16] H. Hirai. Discrete Convexity and Polynomial Solvability in Minimum
0-Extension Problems. Mathematical Programming, Series A(155):1–55,
2016.

[17] V. Kolmogorov. Personal communication, 2019.

[18] Richard E. Ladner. On the Structure of Polynomial Time Reducibility.
Journal of the ACM, 22(1):155–171, 1975.

[19] Thomas J. Schaefer. The complexity of satisfiability problems. In Pro-
ceedings of the tenth annual ACM symposium on Theory of computing,
STOC ’78, pages 216–226, New York, NY, USA, 1978. Association for
Computing Machinery.

[20] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring.
Journal of Combinatorial Theory, Series B, 48(1):92–110, 1990.

[21] Johan Thapper and Stanislav Živný. The complexity of finite-valued
CSPs. In Proceedings of the forty-fifth annual ACM symposium on
Theory of Computing, STOC ’13, pages 695–704, New York, NY, USA,
2013. Association for Computing Machinery.

[22] Dmitriy Zhuk. A Proof of the CSP Dichotomy Conjecture. Journal of
the ACM, 67(5):30:1–30:78, 2020.

[23] Andrei Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In IEEE
58th Annual Symposium on Foundations of Computer Science, pages
319–330, 2017.

[24] Tomás Feder and Moshe Y. Vardi. Monotone monadic SNP and
constraint satisfaction. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of Computing, STOC ’93, pages 612–622, New
York, NY, USA, 1993. Association for Computing Machinery.

[25] Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolinek. The
Complexity of General-Valued CSPs. arXiv:1502.07327 [cs], 2017.

[26] Johan De Kleer. A comparison of ATMS and CSP techniques. In
Proceedings of the 11th international joint conference on Artificial
intelligence - Volume 1, IJCAI’89, pages 290–296, San Francisco, CA,
USA, 1989. Morgan Kaufmann Publishers Inc.

51

[27] Roman Barták, Miguel Salido, and Francesca Rossi. New trends in
constraint satisfaction, planning, and scheduling: A survey. Knowledge
Eng. Review, 25:249–279, 2010.

[28] Ugo Montanari. Networks of constraints: Fundamental properties and
applications to picture processing. Information Sciences, 7:95–132, 1974.

[29] David Waltz. Understanding Line Drawings of Scenes with Shadows. In
The Psychology of Computer Vision. McGraw-Hill, 1975.

[30] Eugene C. Freuder and Alan K. Mackworth. Introduction to the special
volume on constraint-based reasoning. Artificial Intelligence, 58(1):1–2,
1992.

[31] Vishal Soni, Satinder Singh, and Michael P. Wellman. Constraint
satisfaction algorithms for graphical games. In Proceedings of the 6th
international joint conference on Autonomous agents and multiagent
systems, AAMAS ’07, pages 1–8, New York, NY, USA, 2007. Association
for Computing Machinery.

[32] S. Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, Reading, Mass, 1995.

[33] Ashok K. Chandra and David Harel. Horn clause queries and general-
izations. The Journal of Logic Programming, 2(1):1–15, 1985.

[34] ISO. SQL-92. Standard ISO/IEC 9075:1992, International Electrotech-
nical Commision, Geneva, Switzerland, 1992.

[35] David A. Cohen, Martin C. Cooper, Paidi Creed, Peter G. Jeavons,
and Stanislav Zivny. An Algebraic Theory of Complexity for Discrete
Optimization. SIAM Journal on Computing, 42(5):1915–1939, 2013.

[36] Libor Barto. The collapse of the bounded width hierarchy. Journal of
Logic and Computation, 26(3):923–943, 2016.

[37] Libor Barto and Michael Pinsker. Topology Is Irrelevant (In a
Dichotomy Conjecture for Infinite Domain Constraint Satisfaction Prob-
lems). SIAM Journal on Computing, 49(2):365–393, 2020.

[38] Peter G. Hinman. Fundamentals of Mathematical Logic. CRC Press,
2018.

[39] H.-J. Bandelt. Hereditary modular graphs. Combinatorica, 8(2):149–
157, 1988.

[40] N. R. Howes. Modern Analysis and Topology. Universitext. Springer-
Verlag, New York, 1st edition, 1995.

[41] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and Their
Relation to Automata. Addison-Wesley, Reading, Mass., 1st edition
edition, 1969.

52

[42] William Cunningham. The optimal multiterminal cut problem. Discrete
Mathematics and Theoretical Compututer Science, 5:105–120, 1991.

[43] G. B. Dantzig and D. R. Fulkerson. On the max-flow min-cut theorem
of networks. Linear Inequalities, Annals of Mathematics Studies,
38(1):215–221, 1956.

[44] R. M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computation, pages 85–103. Springer, Boston, MA, 1972.

[45] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[46] Johan Thapper and Stanislav Živný. The Complexity of Finite-Valued
CSPs. Journal of the ACM, 63(4):1–33, 2016.

[47] Anna Huber, Andrei Krokhin, and Robert Powell. Skew Bisubmodular-
ity and Valued CSPs. SIAM Journal on Computing, 43, 2014.

[48] David Cohen, Martin Cooper, Peter Jeavons, and Andrei Krokhin.
The complexity of soft constraint satisfaction. Artificial Intelligence,
170:983–1016, 2006.

[49] Vladimir Kolmogorov. The Power of Linear Programming for Finite-
Valued CSPs: A Constructive Characterization, 2012.

[50] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53–72,
1980.

[51] Victor Klee and George J. Minty. How good is the simplex algorithm?
Inequalities III, Proceedings Third Symposium, pages 159–175, 1972.

[52] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of
algorithms: Why the simplex algorithm usually takes polynomial time.
Journal of the ACM, 51(3):385–463, 2004.

[53] M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in
the presence of noise. Kibernetika, 12:612–628, 1977.

[54] Ferdinand Georg Frobenius. Über die Congruenz nach einem aus zwei
endlichen Gruppen gebildeten Doppelmodul. ETH-Bibliothek Zürich,
1887.

[55] William Burnside. Theory of Groups of Finite Order. Cambridge
University Press, 1897.

[56] Felix Klein. Vorlesungen über das Ikosaeder: und die Auflösung der
Gleichungen vom fünften Grade. Teubner, Leipzig, 1884.

[57] NOT USED AS A RESOURCE FOR OBTAINING MY RESULTS:
Karzanov. Hard cases of the multifacility location problem. Discrete
Applied Mathematics, 143:368–373, 2004.

53

	Introduction
	The Problem
	Examples
	Motivation
	The CSP framework
	History
	Methods and organization of this work

	Preliminaries
	Basic terminology of graph theory
	Special classes of graphs
	Semimetrics
	Extension problems
	Computational complexity
	VCSP over a fixed language
	VCSP language for our problem
	Selected NP-complete problems

	NP-completeness for non-modular graphs
	Intervals and medians
	Properties of non-modular graphs
	Construction of the reduction
	A high-level description
	The construction

	Analysis of the reduction
	Analysis of the functions
	Analysis of the instances

	Hardness result

	NP-completeness for modular non-orientable graphs
	Properties of modular non-orientable graphs
	Construction of the model
	Analysis of the model
	Hardness results

	Easy cases
	Algebraic tools
	Linear optimization tools
	Results

	Conclusion
	Bibliography

